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Straight skeletons

I Wavefront propagation:
I At time t the wavefront WS(t) forms a mitered offset.
I Events: structural changes of the wavefront over time.

I S(P) is the set of loci traced out by vertices of WS(t).
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Voronoi diagrams

I Given:
I A metric space (Rd , ‖.‖).
I A finite set S = {s1, . . . , sn} of input sites.

I Voronoi region R(si ,S) = {q ∈ Rd : ‖q − si‖ ≤ ‖q − sj‖, 1 ≤ j ≤ n}.
I Voronoi diagram V(S) =

⋃n
i=1 ∂R(si ,S).

R(si ,S)

si
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Voronoi diagram of a polygon

I Given: A polygon (with holes) P.

I Interpret the vertices and edges of P as input sites S .

I V(P) = V(S) ∩ P.

I V(P) tessellates P into Voronoi regions.
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Straight skeleton versus Voronoi diagram

I The straight skeleton does not fit into the Abstract Voronoi Diagram
framework of Klein.

I Computing S(P) is P-complete.

I The straight skeleton is prone to non-local effects.

I S(P) changes discontinuously when moving vertices of P.

TL’DR: The straight skeleton is fundamentally different from the Voronoi diagram.

On the other hand:

I P rectilinear, (R2, ‖.‖∞): V(P) = S(P).

I P’s reflex vertices “rounded”, (R2, ‖.‖2): V(P) = S(P).

Question

Under which circumstances is V(P) = S(P)?
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Why?

Best of both worlds:

I Optimal algorithms for V(P) in R2 known, but not for S(P).

I Definition for S(P) in R3 is a pain, but not for V(P).

I S(P) comprises piecewise-linear features only, but V(P) does not.

I V(P) changes continuously, S(P) does not, et cetera.
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Voronoi diagrams by means of wavefronts

I X ,Y ⊆ Rd :
I X ⊕ Y = {x + y : x ∈ X , y ∈ Y }.
I X 	 Y = {z ∈ Rd : {z} ⊕ Y ⊆ X}.

I Unit ball B = {x ∈ Rd : ‖x‖ ≤ 1}.
I Minkowski offset WV(t) = ∂(P 	 tB).

unit ball
P

Stefan Huber, Oswin Aichholzer, Thomas Hackl, Birgit Vogtenhuber: Straight Skeletons By Means of Voronoi Diagrams 7 of 19



Voronoi diagrams by means of wavefronts

unit ball
P

WV(t) = ∂(P 	 tB)

= P ∩ ∂(∂ P ⊕ tB)

= P ∩
⋃

face s of ∂ P

R(s,P) ∩ ∂(s ⊕ t · B)
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Voronoi diagrams by means of wavefronts

I V(P) is the interference pattern of the wavefront WV .

I The norm ‖.‖ can be specified by a unit ball B:
I ‖x‖B = inf{t ≥ 0: x ∈ tB} for any x ∈ Rd .

Question

For which unit balls B and for which input shapes P is WS(t) =WV(t) for all
t ≥ 0?
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Proper unit balls

‖.‖B shall be a norm:

I B needs to be convex and o-symmetric.

WS(t) has a piecewise-linear geometry.

I ∂(P 	 tB) comprises features of P and B.

I For WS(t) =WV(t), B needs to be polyhedral.

At least for P = B we would like that WS(t) =WV(t).

I WV(t) = (1− t)B.

I All facets of WV reach o at time 1.

I All facets of WS need to reach o at time 1.

I All facets of B have distance 1 to o.

I We call such a B isotropic.
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Proper unit balls

Definition
A proper unit ball is a convex, o-symmetric, isotropic polyhedron.

Lemma

For a proper unit ball B and any v ∈ Rd it holds that ‖v‖2 ≥ ‖v‖B , and equality
holds exactly when v is a normal vector of a facet of B.
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Proper input shapes

Definition

A (d-dimensional) input shape P is a connected, compact set in Rd whose
boundary forms a polyhedral surface that constitutes an orientable
(d − 1)-manifold.

Definition
A face f of P of dimension at most d − 2 is called reflex if for any point p in the
relative interior of f and for any Euclidean ball O, which is centered at p and has
sufficiently small but positive radius, O \ P is contained in a half-space whose
boundary supports p.
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Corresponding facets

For a facet f of P let n(f ) be the normal vector of f pointing to the interior.

Lemma

Every facet f of P has a corresponding facet f B of B that has n(f ) as the outer
normal vector, unless WV(ε) 6=WS(ε) for some ε > 0.
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Two-dimensional input shapes

The last lemma says:

I For every edge e of P there is a corresponding edge eB of B.

Lemma

Let v be a reflex vertex of P with incident edges e1 and e2. Then there is a
corresponding vertex vB of B that is incident to eB1 and eB2 , unless
WV(ε) 6=WS(ε) for some ε > 0.

The existence of corresponding edges and reflex vertices is necessary for
WV(t) =WS(t).
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Two-dimensional input shapes

Definition

A proper input shape P w.r.t. a proper unit ball B in R2 is a polygon with holes
such that

(I1) for each edge e of P there is a corresponding edge eB of B whose outer
normal vector is n(e) and

(I2) for each reflex vertex v of P, incident to edges e1 and e2, there is a
corresponding vertex vB of B that is incident to eB1 and eB2 .

Theorem

For a proper input shape P w.r.t. a proper unit ball B in R2 it holds that
WS(t) =WV(t) for all t ≥ 0.
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Higher-dimensional input shapes

We know: each facet f of P has a corresponding facet f B in B.

For d = 2: a proper input shape looks locally the same as a unit ball at
non-convex features.

I For d > 2 we have a larger “diversity” of non-convexity.

I For (d − 2)-dimensional faces the situation is still simpler.

Lemma

Let P be an input shape in Rd , where d ≥ 2. For each reflex (d − 2)-dimensional
face e of P, which is incident to facets f1 and f2, it holds that f B1 ∩ f B2 6= ∅, unless
WV(ε) 6=WS(ε) for some ε > 0.

From f B1 ∩ f B2 6= ∅ it does not follow that f B1 ∩ f B2 forms a (d − 2)-dimensional
face of B!
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Proper input shapes

Definition

An input shape P in Rd is called proper w.r.t. a proper unit ball B if

(I1) for each facet f of P there is a corresponding facet f B of B whose outer
normal vector is n(f ) and

(I2) for all points p on all facets f of P, there is a point p′ such that
infq∈P ‖p′ − q‖B = ‖p′ − p‖B > 0 and p ∈ relintf (f ∩ (p′ + ‖p′ − p‖B ∂ B)).

Lemma
For any proper input shape P w.r.t. B there is a finite point set S , with
P ∩ S = ∅, and some ε > 0 such that ∂ P ⊆ ∂(S ⊕ εB).
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Corresponding reflex faces

Lemma

Let e be a reflex face of dimension k of a proper input shape P in Rd , where
0 ≤ k ≤ d − 2. Then for any point p ∈ relint e there is a point pB ∈ ∂ B such
that for some ε, ε′ > 0 the sets ∂ P ∩ (p + εO) and ∂ B ∩ (pB + ε′O) are
homothetic, where O denotes the Euclidean unit ball. In particular, to e
corresponds a k-dimensional face eB of B with pB ∈ relint eB .

Theorem

For a proper input shape P w.r.t. a proper unit ball B in Rd it holds that
WS(t) =WV(t) for all t ≥ 0.
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Approximation by proper input shapes

Lemma

For any input shape P and any ε > 0 there is proper input shape P ′ with
P ⊆ P ′ ⊆ P ⊕ εO.
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