Straight Skeletons By Means of Voronoi Diagrams

 $\underline{\mathsf{Stefan}\ \mathsf{Huber}^1} \quad \mathsf{Oswin}\ \mathsf{Aichholzer}^2 \quad \mathsf{Thomas}\ \mathsf{Hackl}^2 \quad \mathsf{Birgit}\ \mathsf{Vogtenhuber}^2$

¹Institute of Science and Technology Austria ²Institute for Software Technology, Graz University of Technology, Austria

May 20, 2014

Stefan Huber, Oswin Aichholzer, Thomas Hackl, Birgit Vogtenhuber: Straight Skeletons By Means of Voronoi Diagrams

Straight skeletons

- Wavefront propagation:
 - At time t the wavefront $W_{\mathcal{S}}(t)$ forms a mitered offset.
 - Events: structural changes of the wavefront over time.
- S(P) is the set of loci traced out by vertices of $W_S(t)$.

(B)

Straight skeletons

- Wavefront propagation:
 - At time t the wavefront $W_{\mathcal{S}}(t)$ forms a mitered offset.
 - Events: structural changes of the wavefront over time.
- S(P) is the set of loci traced out by vertices of $W_S(t)$.

< E > < E >

Voronoi diagrams

► Given:

- ► A metric space (ℝ^d, ||.||).
- A finite set $S = \{s_1, \ldots, s_n\}$ of *input sites*.
- ▶ Voronoi region $\mathcal{R}(s_i, S) = \{q \in \mathbb{R}^d : ||q s_i|| \le ||q s_j||, 1 \le j \le n\}.$
- Voronoi diagram $\mathcal{V}(S) = \bigcup_{i=1}^n \partial \mathcal{R}(s_i, S)$.

3 K K 3 K

Voronoi diagrams

Given:

- A metric space $(\mathbb{R}^d, \|.\|)$.
- A finite set $S = \{s_1, \ldots, s_n\}$ of *input sites*.
- ▶ Voronoi region $\mathcal{R}(s_i, S) = \{q \in \mathbb{R}^d : ||q s_i|| \le ||q s_j||, 1 \le j \le n\}.$
- Voronoi diagram $\mathcal{V}(S) = \bigcup_{i=1}^n \partial \mathcal{R}(s_i, S).$

3 D (3 D)

Voronoi diagram of a polygon

- Given: A polygon (with holes) *P*.
- ▶ Interpret the vertices and edges of *P* as input sites *S*.

$$\blacktriangleright \mathcal{V}(P) = \mathcal{V}(S) \cap P.$$

• $\mathcal{V}(P)$ tessellates P into Voronoi regions.

프 > - * 프 >

Voronoi diagram of a polygon

- Given: A polygon (with holes) P.
- ▶ Interpret the vertices and edges of *P* as input sites *S*.
- $\blacktriangleright \mathcal{V}(P) = \mathcal{V}(S) \cap P.$

• $\mathcal{V}(P)$ tessellates P into Voronoi regions.

∢ 문 ► < 문 ►

Straight skeleton versus Voronoi diagram

- The straight skeleton does not fit into the Abstract Voronoi Diagram framework of Klein.
- Computing $\mathcal{S}(P)$ is \mathcal{P} -complete.
- ▶ The straight skeleton is prone to non-local effects.
- S(P) changes discontinuously when moving vertices of P.

TL'DR: The straight skeleton is fundamentally different from the Voronoi diagram.

글 > - < 글 > -

Straight skeleton versus Voronoi diagram

- The straight skeleton does not fit into the Abstract Voronoi Diagram framework of Klein.
- Computing $\mathcal{S}(P)$ is \mathcal{P} -complete.
- The straight skeleton is prone to non-local effects.
- S(P) changes discontinuously when moving vertices of P.

TL'DR: The straight skeleton is fundamentally different from the Voronoi diagram.

On the other hand:

- *P* rectilinear, $(\mathbb{R}^2, \|.\|_{\infty})$: $\mathcal{V}(P) = \mathcal{S}(P)$.
- ▶ *P*'s reflex vertices "rounded", $(\mathbb{R}^2, \|.\|_2)$: $\mathcal{V}(P) = \mathcal{S}(P)$.

Question

Under which circumstances is $\mathcal{V}(P) = \mathcal{S}(P)$?

A B + A B +
 A

Best of both worlds:

- Optimal algorithms for $\mathcal{V}(P)$ in \mathbb{R}^2 known, but not for $\mathcal{S}(P)$.
- Definition for $\mathcal{S}(P)$ in \mathbb{R}^3 is a pain, but not for $\mathcal{V}(P)$.
- S(P) comprises piecewise-linear features only, but V(P) does not.
- $\mathcal{V}(P)$ changes continuously, $\mathcal{S}(P)$ does not, et cetera.

Voronoi diagrams by means of wavefronts

► $X, Y \subseteq \mathbb{R}^d$:

- $X \oplus Y = \{x + y \colon x \in X, y \in Y\}.$
- $X \ominus Y = \{z \in \mathbb{R}^d : \{z\} \oplus Y \subseteq X\}.$
- Unit ball $B = \{x \in \mathbb{R}^d : ||x|| \le 1\}.$
- Minkowski offset $\mathcal{W}_{\mathcal{V}}(t) = \partial(P \ominus tB)$.

Voronoi diagrams by means of wavefronts

$$= P \cap \partial(\partial P \oplus tB)$$
$$= P \cap \bigcup_{\text{face } s \text{ of } \partial P} \mathcal{R}(s, P) \cap \partial(s \oplus t \cdot B)$$

Stefan Huber, Oswin Aichholzer, Thomas Hackl, Birgit Vogtenhuber: Straight Skeletons By Means of Voronoi Diagrams

문▶ ★ 문▶

Voronoi diagrams by means of wavefronts

- $\mathcal{V}(P)$ is the interference pattern of the wavefront $\mathcal{W}_{\mathcal{V}}$.
- The norm $\|.\|$ can be specified by a unit ball *B*:
 - $||x||_B = \inf\{t \ge 0 \colon x \in tB\}$ for any $x \in \mathbb{R}^d$.

Question

For which unit balls B and for which input shapes P is $W_S(t) = W_V(t)$ for all $t \ge 0$?

Proper unit balls

 $\|.\|_B$ shall be a norm:

B needs to be convex and o-symmetric.

 $\mathcal{W}_{\mathcal{S}}(t)$ has a piecewise-linear geometry.

- ▶ $\partial(P \ominus tB)$ comprises features of *P* and *B*.
- For $W_{\mathcal{S}}(t) = W_{\mathcal{V}}(t)$, *B* needs to be polyhedral.

At least for P = B we would like that $W_S(t) = W_V(t)$.

- $\blacktriangleright \mathcal{W}_{\mathcal{V}}(t) = (1-t)B.$
- ▶ All facets of W_V reach *o* at time 1.
- ▶ All facets of *W*_S need to reach *o* at time 1.
- ▶ All facets of *B* have distance 1 to *o*.
- ▶ We call such a *B* isotropic.

글 > - < 글 >

Proper unit balls

Definition

A proper unit ball is a convex, o-symmetric, isotropic polyhedron.

Lemma

For a proper unit ball B and any $v \in \mathbb{R}^d$ it holds that $||v||_2 \ge ||v||_B$, and equality holds exactly when v is a normal vector of a facet of B.

Proper input shapes

Definition

A (*d*-dimensional) input shape P is a connected, compact set in \mathbb{R}^d whose boundary forms a polyhedral surface that constitutes an orientable (d-1)-manifold.

Definition

A face f of P of dimension at most d-2 is called *reflex* if for any point p in the relative interior of f and for any Euclidean ball O, which is centered at p and has sufficiently small but positive radius, $O \setminus P$ is contained in a half-space whose boundary supports p.

Corresponding facets

For a facet f of P let n(f) be the normal vector of f pointing to the interior.

Lemma

Every facet f of P has a corresponding facet f^B of B that has n(f) as the outer normal vector, unless $W_{\mathcal{V}}(\varepsilon) \neq W_{\mathcal{S}}(\varepsilon)$ for some $\varepsilon > 0$.

Two-dimensional input shapes

The last lemma says:

• For every edge e of P there is a corresponding edge e^B of B.

Lemma

Let v be a reflex vertex of P with incident edges e_1 and e_2 . Then there is a corresponding vertex v^B of B that is incident to e_1^B and e_2^B , unless $\mathcal{W}_{\mathcal{V}}(\varepsilon) \neq \mathcal{W}_{\mathcal{S}}(\varepsilon)$ for some $\varepsilon > 0$.

The existence of corresponding edges and reflex vertices is necessary for $W_V(t) = W_S(t)$.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Two-dimensional input shapes

Definition

A proper input shape P w.r.t. a proper unit ball B in \mathbb{R}^2 is a polygon with holes such that

- (11) for each edge e of P there is a corresponding edge e^B of B whose outer normal vector is n(e) and
- (12) for each reflex vertex v of P, incident to edges e_1 and e_2 , there is a corresponding vertex v^B of B that is incident to e_1^B and e_2^B .

Theorem

For a proper input shape P w.r.t. a proper unit ball B in \mathbb{R}^2 it holds that $\mathcal{W}_{\mathcal{S}}(t) = \mathcal{W}_{\mathcal{V}}(t)$ for all $t \ge 0$.

A = A = A

Higher-dimensional input shapes

We know: each facet f of P has a corresponding facet f^B in B.

For d = 2: a proper input shape looks locally the same as a unit ball at non-convex features.

- For d > 2 we have a larger "diversity" of non-convexity.
- For (d-2)-dimensional faces the situation is still simpler.

Lemma

Let P be an input shape in \mathbb{R}^d , where $d \ge 2$. For each reflex (d - 2)-dimensional face e of P, which is incident to facets f_1 and f_2 , it holds that $f_1^B \cap f_2^B \neq \emptyset$, unless $\mathcal{W}_{\mathcal{V}}(\varepsilon) \neq \mathcal{W}_{\mathcal{S}}(\varepsilon)$ for some $\varepsilon > 0$.

Higher-dimensional input shapes

We know: each facet f of P has a corresponding facet f^B in B.

For d = 2: a proper input shape looks locally the same as a unit ball at non-convex features.

- For d > 2 we have a larger "diversity" of non-convexity.
- For (d-2)-dimensional faces the situation is still simpler.

Lemma

Let P be an input shape in \mathbb{R}^d , where $d \ge 2$. For each reflex (d - 2)-dimensional face e of P, which is incident to facets f_1 and f_2 , it holds that $f_1^B \cap f_2^B \neq \emptyset$, unless $\mathcal{W}_{\mathcal{V}}(\varepsilon) \neq \mathcal{W}_{\mathcal{S}}(\varepsilon)$ for some $\varepsilon > 0$.

From $f_1^B \cap f_2^B \neq \emptyset$ it does not follow that $f_1^B \cap f_2^B$ forms a (d-2)-dimensional face of B!

Proper input shapes

Definition

An input shape P in \mathbb{R}^d is called *proper* w.r.t. a proper unit ball B if

- (11) for each facet f of P there is a corresponding facet f^B of B whose outer normal vector is n(f) and
- (12) for all points p on all facets f of P, there is a point p' such that $\inf_{q \in P} \|p' - q\|_B = \|p' - p\|_B > 0$ and $p \in \operatorname{relint}_f (f \cap (p' + \|p' - p\|_B \partial B)).$

Proper input shapes

Definition

An input shape P in \mathbb{R}^d is called *proper* w.r.t. a proper unit ball B if

- (11) for each facet f of P there is a corresponding facet f^B of B whose outer normal vector is n(f) and
- (12) for all points p on all facets f of P, there is a point p' such that $\inf_{q \in P} \|p' - q\|_B = \|p' - p\|_B > 0$ and $p \in \operatorname{relint}_f (f \cap (p' + \|p' - p\|_B \partial B)).$

Lemma

For any proper input shape P w.r.t. B there is a finite point set S, with $P \cap S = \emptyset$, and some $\varepsilon > 0$ such that $\partial P \subseteq \partial(S \oplus \varepsilon B)$.

Corresponding reflex faces

Lemma

Let e be a reflex face of dimension k of a proper input shape P in \mathbb{R}^d , where $0 \le k \le d-2$. Then for any point $p \in$ relint e there is a point $p^B \in \partial B$ such that for some $\varepsilon, \varepsilon' > 0$ the sets $\partial P \cap (p + \varepsilon O)$ and $\partial B \cap (p^B + \varepsilon' O)$ are homothetic, where O denotes the Euclidean unit ball. In particular, to e corresponds a k-dimensional face e^B of B with $p^B \in$ relint e^B .

Theorem

For a proper input shape P w.r.t. a proper unit ball B in \mathbb{R}^d it holds that $\mathcal{W}_{\mathcal{S}}(t) = \mathcal{W}_{\mathcal{V}}(t)$ for all $t \ge 0$.

A B A A B A

Approximation by proper input shapes

Lemma

For any input shape P and any $\varepsilon > 0$ there is proper input shape P' with $P \subseteq P' \subseteq P \oplus \varepsilon O$.

Stefan Huber, Oswin Aichholzer, Thomas Hackl, Birgit Vogtenhuber: Straight Skeletons By Means of Voronoi Diagrams

▲ 문 ► < 문 ►