
02: Concurrent & Network Programming
Distributed Software Architectures

Stefan Huber <shuber.lba@fh-salzburg.ac.at>

March 22, 2019

Stefan Huber: 02: Concurrent & Network Programming 1 of 26

mailto:shuber.lba@fh-salzburg.ac.at

Section 1

Concurrent Programming

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 2 of 26

Processes and threads

Process:
I Multi-tasking: An OS can execute multiple programs at a time.
I A process is an OS abstraction to provide a virtual processor with virtual memory.
I The OS isolates processes from each other: It gives the illusion of having exclusive

access to the processor and memory.
I Process control block contains information on:

I Process Id
I CPU states: instruction pointer, registers, memory mapping, . . .
I Privilege information: user id, group id, . . .
I Resources: opened files, sockets, pipes, . . .

I Processes hierarchy: Every process has a parent process.

Threads:
I Multi-threading: Multiple threads of execution in one process context.
I Threads operate on the process memory and with the process resources.
I Thread safety:

I Code is thread-safe if, when executed by multiple threads, there is no unintended
interference.

I Global states1 may break thread safety; concurrent access must be taken into account.
1 This includes static variables in C functions. Thread-safety requires at least re-entrancy.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 2 of 26

Process memory layout

text

data

bss

heap

stack

0

args
return addr
local vars

args
return addr
local vars

args
return addr
local vars

stack
frame

a
d

d
re

ss
e
s

stack pointer

instruction pointer

Processor states

more register, ...

Memory layout

Figure: A simplified process memory layout and the relationship to processor registers. A “thread
of execution” refers to the processor states.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 3 of 26

Multi-threaded clients

Latencies:
I Communication in a distributed system may involve significant latencies.
I Idea: Hide latencies by doing something else while waiting.

Web browser:
I Has to fetch many resources besides referenced in an HTML document.
I Fetch them in parallel to avoid summing up latencies.
I Displaying content before having all resources fetched.
I Multi-threading simplifies implementation. For instance, each fetch can be

implemented with a simple blocking read.
I Multiple connections in parallel may utilize multiple web servers.

Example
Electrolysis2 is a multi-process architecture of Firefox. The parent process forks 4 child
processes to handle web content.3 Each child process has a plethora of threads running.

2
https://wiki.mozilla.org/Electrolysis

3 Firefox 66 increases this to 8: https://bugzilla.mozilla.org/show_bug.cgi?id=1470280.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 4 of 26

https://wiki.mozilla.org/Electrolysis
https://bugzilla.mozilla.org/show_bug.cgi?id=1470280

Thread-level parallelism

I A modern web browser may create hundreds of threads.
I Most are probably not running most of the time but waiting.
I To what extent are those running in parallel?

Definition (Thread-level parallelism (TLP))
For a total of N threads let ci be the fraction of time where exactly i threads executed
simultaneously. Then we define

TLP =
∑N

i=1 i · ci

1 − c0
.

I Modern web browsers have a TLP of 1.5 to 2.5.
I Hence, a processor with 2 to 3 cores could be utilized well.
I Moreover, the hundreds of threads are used with software architecture in mind.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 5 of 26

Multi-threaded servers

Servers deal with multiple clients, hence multi-threading is typically more important for
servers than clients.

I Simpler code.
I Higher performance.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 6 of 26

Multi-threaded servers

Example: File server
I Popular architecture: A dispatcher and multiple worker threads.
I Dispatcher thread receives requests from clients.
I Dispatcher distributes work to one of the worker threads.
I Worker thread performs the read with blocking reads on the file system.

Dispatcher

Pool of workers
Request

Benefits:
I Parallel handling of clients, unlike for a single-threaded implementation with

blocking file IO.
I Simpler to implement than managing asynchronous calls with multiple clients.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 7 of 26

Benefits of concurrent programming

Performance gains:
I Parallel execution:

I Hyper-threading
I Multi-core processors
I Multiple processors

I IO:
I Native Command Queing (NCQ) of hard disks, RAID systems.
I Parallel fetch of web page resources to reduce serialized latencies.
I (Concurrent IO can easily degrade performance, too!)

Software architecture gains:
I Modularization into concurrent modules as architecture.
I Simpler code, e.g., we can still use blocking IO instead of asynchronous IO.
I Splitting up a process into multiple can improve security:

I Isolation mechanisms
I Finer privilege control

Concurrent programming does not imply parallel (simultaneous) execution.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 8 of 26

Concurrency in Python

Python documentation to concurrency:
I https://docs.python.org/3/library/concurrency.html

Modules in the Python Standard Library:
I threading
I multiprocessing
I and more. . .

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 9 of 26

https://docs.python.org/3/library/concurrency.html

Threading module

Thread class represents a thread:
I A callable object (e.g., function) can be passed to the constructor.
I The method start() starts the thread execution.
I The method join() waits until thread terminates.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 10 of 26

The Global Interpreter Lock

The standard Python interpeter (CPython) has a Global Interpreter Lock (GIL):
I No two threads can execute Python byte code at the same time.
I Makes access to Python data structures thread-safe.
I However, no parallelism for Python threads within a process!

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 11 of 26

Lock

The class Lock forms synchronization primitive:
I Can have two states: locked, unlocked
I The method release() unlocks a Lock.
I The method acquire() locks it.

I If it is unlocked, it gets locked and continues execution.
I It it is already locked, the calling thread gets blocked until another thread releases it.

I Can be used with with statement (context manager).

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 12 of 26

Side topic: Context Manager

When dealing with all kind of resources we often produce code like this:
1 VAR = EXPR # Creating file object , threading . Lock (), etc .
2 VAR. some_initialization () # Opening file , aquiring lock , etc.
3 try:
4 some_logic (VAR) # File I/O, accessing resource , etc .
5 finally : # No matter whether exception has been raised
6 VAR. some_cleanup () # Closing file , releasing lock , etc .

This is a typical situation where the context manager protocol4 can help:
1 # Aquire and later release mylock in an exception - safe fashion
2 with mylock :
3 do_something ()

This translates basically to
1 mylock . __enter__ () # Does lock . acquire ()
2 try:
3 do_something ()
4 finally :
5 mylock . __exit__ () # Does lock . release ()

4 See https://docs.python.org/3/reference/datamodel.html#context-managers and https://www.python.org/dev/peps/pep-0343/.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 13 of 26

https://docs.python.org/3/reference/datamodel.html#context-managers
https://www.python.org/dev/peps/pep-0343/

Barrier

The class Barrier makes all threads to wait for each other.
I A barrier is created for a number N of threads.
I The method wait() makes the thread wait until N threads called wait() and then all

threads are released simultaneously.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 14 of 26

Event

The class Event is a one-bit signal (flag).
I The method is_set() returns True iff flag is set.
I The method set() raises the flag and clear() resets it.
I The method wait() makes the thread wait until flag is raised.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 15 of 26

Multiprocessing module

The multiprocessing package provides a similar API to threading.
I The class Process is like Thread.
I The method start() and join() start execution and wait until termination.
I There is also Lock(), Event(), Barrier(), and the like.

But there is more:
I Processes have their own address space; we require Inter-Process Communication:

I The class Queue allows to put() and get() objects.
I The function Pipe() creates a pair of connection object.
I Shared memory.

I The class Pool allows to easily distribute computational load.
1 def f(x):
2 return x*x
3
4 if __name__ == " __main__ ":
5 with multiprocessing .Pool (5) as p:
6 print (p.map(f, [1, 2, 3]))

Processes are scheduled by the OS: No GIL between processes.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 16 of 26

Multiprocessing module

The multiprocessing package provides a similar API to threading.
I The class Process is like Thread.
I The method start() and join() start execution and wait until termination.
I There is also Lock(), Event(), Barrier(), and the like.

But there is more:
I Processes have their own address space; we require Inter-Process Communication:

I The class Queue allows to put() and get() objects.
I The function Pipe() creates a pair of connection object.
I Shared memory.

I The class Pool allows to easily distribute computational load.
1 def f(x):
2 return x*x
3
4 if __name__ == " __main__ ":
5 with multiprocessing .Pool (5) as p:
6 print (p.map(f, [1, 2, 3]))

Processes are scheduled by the OS: No GIL between processes.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 16 of 26

Section 2

Network Programming

Stefan Huber: 02: Concurrent & Network Programming Network Programming 17 of 26

Reminder

Anwesenheitsliste nicht vergessen.

Stefan Huber: 02: Concurrent & Network Programming Network Programming 17 of 26

ISO OSI Reference model

7 Application High-level APIs, remote file access, resource sharing
6 Presentation Data translation including encoding, compression, encryption
5 Session Communication sessions with back-and-forth transmission
4 Transport Sending data segments and datagrams
3 Network Routing packets, addressing, traffic control
2 Data link Data frames between nodes
1 Physical Bit stream over physical medium

1
2
3
4
5
6
7

1
2
3
4
5
6
7

I A reference model.
I Each layer dedicated to a specific task.
I Each layer builds upon the layer below, provides a service to the layer above
I Software engineering aspects:

I Separation of concerns: Dedication to specific tasks, inner cohesion.
I A concrete layer implementation must be exchangeable: It must only rely on the

contract with the layer below and fulfills the contract to the layer above.
Stefan Huber: 02: Concurrent & Network Programming Network Programming 18 of 26

Internet protocol suite

Application HTTP, FTP, DNS, IMAP, POP, SMTP, SSH, Telnet, . . .
Transport TCP, UDP, . . .
Internet IPv4, IPv6, ICMP, . . .
Link Ethernet, WiFi, PPP, FDDI, . . .

Link
layer
header

Link
layer
trailer

IP
header

Transport
header

Application
header Message

Ethernet IPv4 TCP HTTP Webpage

Stefan Huber: 02: Concurrent & Network Programming Network Programming 19 of 26

Network tools

host DNS lookup utility
netstat Prints network connections, and more

nc Netcat is the TCP/IP swiss army knife
socat Socket cat, a mix of nc and cat
curl A command line data transfer tool by URL.

tcpdump Dumps traffic on a network
wireshark An extensive network analyzer for all kind of protocols

Stefan Huber: 02: Concurrent & Network Programming Network Programming 20 of 26

Sockets

Berkley sockets:
I The API for communication, not only for Internet network communication:

I A socket is a communication endpoint.
I The communication happens between two sockets.

I A typical sequence of socket calls looks as follows:
server client
s = socket()
s.bind()
s.listen() b = socket()

a = s.accept() b.connect()
a.send()/recv() b.send()/recv()
a.close() b.close()

s.close()

I The middle column is typically done repeatedly:
I In a single-threaded loop.
I In parallel threads.
I In a forked process.

Stefan Huber: 02: Concurrent & Network Programming Network Programming 21 of 26

Sockets in Python

1 import socket
2
3 # See https :// docs . python .org /3/ library / socket . html
4 # AF_INET = " Internet protocol ", SOCK_STREAM = TCP , SOCK_DGRAM = UDP
5 s = socket . socket (socket .AF_INET , socket . SOCK_STREAM)
6 s.bind ((" 127.0.0.1 ", 1200))
7 s. listen ()
8 a, addrinfo = s. accept ()
9 print ("recv: ", a.recv (1024). decode ("utf -8"))
10 a.send(bytes (" greetings from server ", "utf -8"))
11 a. close ()
12 s. close ()

1 import socket
2
3 b = socket . socket (socket .AF_INET , socket . SOCK_STREAM)
4 b. connect ((" 127.0.0.1 ", 1200))
5 b.send(bytes (" greetings from client ", "utf -8"))
6 print ("recv: ", b.recv (1024). decode ("utf -8"))
7 b. close ()

Stefan Huber: 02: Concurrent & Network Programming Network Programming 22 of 26

A version for UDP

1 import socket
2
3 # With SOCK_DGRAM we do not use listen () and accept ().
4 s = socket . socket (socket .AF_INET , socket . SOCK_DGRAM)
5 s.bind ((" localhost ", 1200))
6 print ("recv:", s.recv (1024))

1 import socket
2
3 s = socket . socket (socket .AF_INET , socket . SOCK_DGRAM)
4 # We can use sendto () instead of connect () and send ().
5 s. sendto (bytes ("hi!", "utf -8"), (" localhost ", 1200))

Stefan Huber: 02: Concurrent & Network Programming Network Programming 23 of 26

Technical details

Timeouts:
I Operations are by default blocking operations.
I A timeout of x (float) seconds can be set by socket.socket.settimeout(x).
I If x is None then timeout is infinity.

Privileged ports:
I Ports below 1024 are privileged.
I On Unix-like operating systems superuser rights are required.

Stefan Huber: 02: Concurrent & Network Programming Network Programming 24 of 26

http.server

The module http.server implements a simple (non-production) HTTP server.
I https://docs.python.org/3/library/http.server.html

1 import http. server
2 import threading
3
4 # A customized Handler class to process HTTP requests
5 class Handler (http. server . BaseHTTPRequestHandler):
6 def do_GET (self):
7 self. send_response (200)
8 self. send_header ("Content -type", "text/ plain ")
9 self. end_headers ()
10 self. wfile . write ("Path was {}\n". format (self.path). encode ())
11
12 if __name__ == " __main__ ":
13 server = http. server . HTTPServer ((’localhost ’, 1080) , Handler)
14 server_th = threading . Thread (target = server . serve_forever)
15 server_th . start ()
16
17 input (" Press <return > to exit")
18 server . shutdown ()

Stefan Huber: 02: Concurrent & Network Programming Network Programming 25 of 26

https://docs.python.org/3/library/http.server.html

urllib.request

The module urllib.requests implements access to URLs in all detail.
I Authentication, SSL/TLS, redirections, cookies, . . .
I https://docs.python.org/3/library/urllib.request.html

1 import urllib . request
2
3 if __name__ == " __main__ ":
4 # Does actually a 303 Moved Permanently to https ://...
5 with urllib . request . urlopen ("http :// www.sthu.org/ monalisa .txt") as f:
6 print (f.read (). decode ("utf -8"))

Stefan Huber: 02: Concurrent & Network Programming Network Programming 26 of 26

https://docs.python.org/3/library/urllib.request.html

	Concurrent Programming
	Network Programming

