
03: Client-Server Architectures
Distributed Software Architectures

Stefan Huber <shuber.lba@fh-salzburg.ac.at>

April 4, 2019

Stefan Huber: 03: Client-Server Architectures 1 of 31

mailto:shuber.lba@fh-salzburg.ac.at

Section 1

Client-Server Architectures

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures 2 of 31

Concurrency models for servers

A server has to handle multiple clients concurrently:
I Connections may be short-term: connect, request, response, close.
I Connections may be long-term or permanent, e.g., a gaming server.
I HTTP connections used to be short-term, but became long-term.

There are two main models for concurrency:

Model I/O model
Fork on request Synchronous I/O, blocking
Event-driven Asynchronous I/O, nonblocking

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Concurrency models for servers 2 of 31

Fork on request

Concurrency can be provided on two levels:
I Processes
I Threads

General scheme:
I Parent process or main thread accepts connections.
I Child process or worker thread handles client connections.

The term fork refers to the POSIX function fork() to fork1 a process. But we also
account for threads here.

1 Like cell mitosis in biology.

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Concurrency models for servers 3 of 31

Fork on request: C-style forking TCP server

1 import socket , os
2
3 if __name__ == " __main__ ":
4 s = socket . socket (socket .AF_INET , socket . SOCK_STREAM)
5 s.bind (("", 1200))
6 s. listen ()
7
8 while True:
9 conn , addr = s. accept ()
10 print ("Got conncetion from", addr)
11 newpid = os.fork ()
12
13 # The child
14 if newpid == 0:
15 s. close ()
16 conn.send(" hello there ". encode ())
17 exit (0)
18 # The parent
19 else:
20 print (" Forked child ", newpid)
21 conn. close ()

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Concurrency models for servers 4 of 31

Fork on request: Python-style TCP server

The module socketserver provides
I TCPServer

I UDPServer

By default single-threaded, synchronous. But there are MixIns:
I ThreadingMixIn

I ForkingMixIn

1 import socketserver
2
3 class MyHandler (socketserver . BaseRequestHandler):
4 def handle (self):
5 self.data = self. request .recv (1024). decode ()
6 self. request . sendall ("got: {}". format (self.data). encode ())
7
8 class MyTcpServer (socketserver . ThreadingMixIn , socketserver . TCPServer):
9 pass
10
11 if __name__ == " __main__ ":
12 s = MyTcpServer ((" localhost ", 1202) , MyHandler)
13 s. serve_forever ()

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Concurrency models for servers 5 of 31

Fork on request

Forking processes is costly:
I Setting up process memory, heap, stack, and kernel data structures.

A process context switch comes at costs:
I Switches between kernel and user space.
I Saving processor registers
I Switching to a different virtual memory mapping and flushing the TLB2.
I A thread context switch is cheaper, but still comes at costs.

Level Provider Register dump VMM switch
Process Kernel Yes Yes
Thread Kernel or user space Yes No

Observation
If we want to handle many thousand connections per second, we cannot afford the costs
for starting threads or processes or switching context between them.

2 Translation lookaside buffer

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Concurrency models for servers 6 of 31

Event-driven architecture

What we start with:
I We want concurrency.
I We cannot handle each connection in a dedicated thread or process.

Hence,
I we stick with a single thread only and
I we cannot use blocking, synchronous I/O calls.

Non-blocking, asynchronous I/O calls:
I send() and recv() immediately return.
I But we need to know whether we can send3 or receive4.
I The select() call monitors a set of file descriptors5 and returns when at least one

becomes ready for read or write.

Summary
We use non-blocking I/O routines and I/O multiplexing based on select() mechanism to
handle multiple concurrently with a single thread.

3 The send buffer must not be full.
4 The receive buffer must not be empty.
5 Files, sockets, et cetera.

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Concurrency models for servers 7 of 31

Event-driven architecture

What we start with:
I We want concurrency.
I We cannot handle each connection in a dedicated thread or process.

Hence,
I we stick with a single thread only and
I we cannot use blocking, synchronous I/O calls.

Non-blocking, asynchronous I/O calls:
I send() and recv() immediately return.
I But we need to know whether we can send3 or receive4.
I The select() call monitors a set of file descriptors5 and returns when at least one

becomes ready for read or write.

Summary
We use non-blocking I/O routines and I/O multiplexing based on select() mechanism to
handle multiple concurrently with a single thread.
3 The send buffer must not be full.
4 The receive buffer must not be empty.
5 Files, sockets, et cetera.

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Concurrency models for servers 7 of 31

Event-driven architecture: I/O multiplexing

The Python module selectors provides an abstraction to the OS primitives6:
I DefaultSelector watches a set of file-like objects.
I select() gives a list of ready file objects.
I register(fileobj, events, data=None) makes the selector to watch for the given events

(read ready, write ready) on the given file object. The data supplied here is returned
by select().

I unregister(fileobj) unregisters the given file object.
I close() closes the entire selector and frees resources.

6 There are actually many.

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Concurrency models for servers 8 of 31

Event-driven architecture: I/O multiplexing

1 import selectors , socket
2
3 if __name__ == " __main__ ":
4 sel = selectors . DefaultSelector ()
5 s = socket . socket (socket .AF_INET , socket . SOCK_STREAM)
6 s.bind (("", 1300))
7 s. listen ()
8 s. setblocking (False)
9
10 def read(sock , mask):
11 data = sock.recv (1024)
12 if data: # Bad : We actually do not know whether we can write !
13 sock.send("** ". encode () + data)
14 else:
15 print (sock. getpeername (), " disconnected ")
16 sel. unregister (sock)
17 sock. close ()
18
19 def accept (sock , mask):
20 conn , addr = sock. accept ()
21 print (addr , " connected ")
22 conn. setblocking (False)
23 sel. register (conn , selectors . EVENT_READ , read)
24
25 sel. register (s, selectors . EVENT_READ , accept)
26 while True:
27 for key , mask in sel. select ():
28 key.data(key.fileobj , mask)

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Concurrency models for servers 9 of 31

Event-driven architecture

1 # The event loop
2 while True:
3 # Get list of pending events (file become ready - ready or write - ready)
4 for key , mask in sel. select ():
5 # mask can be
6 # selectors . EVENT_READ or
7 # selectors . EVENT_WRITE or
8 # selectors . EVENT_READ | selectors . EVENT_WRITE
9 # key . fileobj is the file object for which the event occured
10 # key . data is the data that has been passed to register ()
11 key.data(key.fileobj , mask)

We interpret this loop as the event loop:
I We register file objects (e.g., sockets) as event sources.
I An event can be selectors.EVENT_READ or selectors.EVENT_WRITE.
I sel.register(sock, selectors.EVENT_READ | selectors.EVENT_WRITE, data) makes sel to

listen for both kind of events on sock.

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Concurrency models for servers 10 of 31

Event-driven architecture

The code below is insufficient:
I The socket may not be ready for send().
I We then get an BlockingIOError.
I We have to register with selectors.EVENT_WRITE enabled and when the socket is ready

to write fetch data from the buffer.

1 def read(sock , mask):
2 data = sock.recv (1024)
3 if data:
4 # Bad : We actually do not know whether we can write !
5 # We actually need to store the response in a buffer
6 # and wait until we receive the EVENT_WRITE event for
7 # sock !
8 sock.send("** ". encode () + data)
9 else:
10 print (sock. getpeername (), " disconnected ")
11 sel. unregister (sock)
12 sock. close ()

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Concurrency models for servers 11 of 31

Event-driven architecture

Summary:
I No thread or process context switch between handlers of different connections.
I In a single event loop iteration we may accept resp. handle a plethora of new resp.

existing connections.
I Concurrency logic is moved from the system (operating system, system libraries) to

the application. This increases code complexity compared to the simple
fork-on-request model.

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Concurrency models for servers 12 of 31

Preforking

Forking processes is costly:
I Hence, do not fork on request but before (pre) requests arrive.
I That is, a master process initially forks a pool of worker processes that handle

upcoming requests.
I The number of worker processes is typically fixed, but could be adapted to load.

Synchronous I/O:
I Preforking and blocking I/O does not deliver (full) concurrency. We can only handle

as many clients as workers in the pool.
I Can be adequate for some application, maybe for a file server where too many disk

I/O operations cannot be handled anyway.

Asynchronous I/O:
I An event-driven architecture with non-blocking I/O does not use preforking for

concurrency.
I However, with multiple workers we can increase CPU utilization.

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Concurrency models for servers 13 of 31

NGINX architecture

NGINX:
I An event-driven webserver with focus on high-performance.
I Used by 37.7% of top 1M websites, 49.7% of the top 100k and 57% of the top 10k

websites in 2016-21-19.7

I March 2019: F5 Networks acquired Nginx company for 670M USD.
I Article on NGINX architecture: https://www.aosabook.org/en/nginx.html

(2012-05-01)

High concurrency:
I Popular website serves 100k to 1M users simultaneously.
I Causes of concurrency needs:

I Decade ago: Slow clients.
I Now: Persistent connections for live update for apps and browsers (tweets, news,

feeds). Modern browsers opening 4–6 simultaneous connections.

7
https://w3techs.com/technologies/cross/web_server/ranking, current data show a further shift to NGINX.

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Concurrency models for servers 14 of 31

https://www.aosabook.org/en/nginx.html
https://w3techs.com/technologies/cross/web_server/ranking

NGINX architecture

Lifetime of a connection:
I A slow client (10 kB/s) requests a 100 kB response. Transmission takes 10 s.
I 100 new connections per second cause 1000 simultaneous connections.
I If a server needs 1 MB main memory8 per per client this sums up to 1 GB in total.

I Maybe, to transmit the same 100 kB to all 1000 clients.
I Persistent connections of modern web make the situation much worse.

Kegel’s C10K manifest (1999):
I Webservers shall be able to handle 10k simultaneous connections.
I 2004: NGINX initially released to address the C10K problem.
I 2012: WhatsApp on 24 core machine, Erlang on FreeBSD: 2M connections9

8 For instance, kernel data structures for 1000 child processes.
9

http://www.erlang-factory.com/upload/presentations/558/efsf2012-whatsapp-scaling.pdf

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Concurrency models for servers 15 of 31

http://www.erlang-factory.com/upload/presentations/558/efsf2012-whatsapp-scaling.pdf

NGINX architecture

I Master forks workers. Workers drop privileges and run the async I/O event loop.
I 2.5 MB memory footprint per 10k (inactive, keep-alive) HTTP connection.
I Often used as load balancer and frontend for backend servers or reverse proxy.
I IPC is primary shared-memory mechanism.

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Concurrency models for servers 16 of 31

Centralized system organization

A centralized organization has the following characteristics:
I A central service is provided by servers.
I Clients are using the service provided by servers.

A simple 2-tiered server-client architecture with a request-response communication is one
example of an centralized organization.

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / System architectures 17 of 31

Communication patterns

Request-response:
I Client sends request to server and server answers with the response.
I Communication is often connection-less or a connection with a short lifetime.
I Setting up connection is costly, hence multiple request-response sequences may be

done over one connection.
I Connection-less communication needs to deal with message losses. Simpler if

operations are idempotent because they can be simply retransmitted “Tell me
amount on bank account” versus “Transfer this amount to this account”.

Client Server

request

response

request

response

wait generate result

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / System architectures 18 of 31

Communication patterns

Publish-subscribe:
I Clients subscribe and/or publish messages of certain categories.
I Server receives messages and forwards them on to clients.
I Clients connect permanently or listen to connection-less broadcasts.
I Modern web (e.g., social media updates) show characteristics of publish-subscribe.

Client 3 Server

subscribe (1, 2)

Client 2Client 1

subscribe (1)

publish (1)

notify (1)

notify (1)

publish (3)

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / System architectures 19 of 31

Two-tiered architecture

A typical server-client architecture (e.g., ERP systems, banking software) is split up into
layers:

1 User-interface
2 Application
3 Database

Two-tier architecture:
I The two tiers are the client and the server.
I There is a cutting line somewhere between those three layers.

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / System architectures 20 of 31

Two-tiered architecture

User interface

User interface

Application

Database

Application

Database

User interface

Database

User interface

Application

Application

Application

Database

User interface

Application

User interface

Database

Database

The two tendencies:
I Fat client: Put the weight to the client.
I Thin client: Put the weight to the server.

Fat versus thin clients:
I Complexity in administration, management, platform-dependency.
I Performance, richness of technology.

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / System architectures 21 of 31

Three-tiered architecture

Typically the application server and database server is actually separated.
I Application server acts itself as client to the database server.
I Cascaded server-client relationship.

Tier 1 Tier 2

request

response

Tier 3

request

response

Reasons for three-tiered architecture:
I Looser coupling and higher scalability.
I The database is typically an off-the shelf component, whereas the application server

might be develop in house.

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / System architectures 22 of 31

CGI

CGI:
I Common Gateway Interface is a protocol10 to pass HTTP requests on to

applications.
I On request webserver launches application, passed request via environment variables,

and reads result from stdout.

FastCGI:
I Webserver preforks a FastCGI process. (Why?)
I Communication to FastCGI process via Unix sockets, named pipes or TCP.

Multiplexing allows concurrent request handling.

10 https://tools.ietf.org/html/rfc3875

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / System architectures 23 of 31

Inter-Process Communication

Because of process memory isolation, communication between processes requires special
means.

Most common techniques are:
I Shared memory
I Anonymous pipes
I Named pipes
I Unix sockets
I Localhost network communication

See https://docs.python.org/3/library/ipc.html for Python documentation on
Inter-Process Communication.

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Inter-Process Communication 24 of 31

https://docs.python.org/3/library/ipc.html

Shared memory

I A process can request an anonymous, shared memory block from the operating
system.

I When the process forks, parent and child have it both mapped in their virtual
address space.

I Concurrent access requires synchronization mechanisms!
I In C this is done by the function mmap().
I In Python we have two data types for this purpose: Value and Array in the

multiprocessing package.

1 import multiprocessing
2
3 def child (v, a):
4 v. value = 42
5 a[1] = 23
6
7 if __name__ == ’__main__ ’:
8 val = multiprocessing . Value (’d’, 0.0)
9 arr = multiprocessing . Array (’i’, range (10))
10 print (val.value , arr [:])
11
12 p = multiprocessing . Process (target =child , args =(val , arr))
13 p. start ()
14 p.join ()
15 print (val.value , arr [:])

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Inter-Process Communication 25 of 31

Pipes

I A pipe11 is a communication channel between two endpoints.
I In C the function pipe() creates a uni-directional channel; it returns a file descriptor

for reading and one for writing.
I The very same function exists in Python as os.pipe().

11 Also called anonymous pipe or POSIX pipe.

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Inter-Process Communication 26 of 31

Pipes in Python

I The multiprocessing package also provides Pipe(), which something different than
POSIX pipes.

I It creates a duplex communication channel and returns a pair of connection objects
on which send() and recv() can be called to send Python objects rather than raw
bytes.

1 import multiprocessing
2
3 def child (conn):
4 print ("recv:", conn.recv ())
5
6 if __name__ == ’__main__ ’:
7 conn1 , conn2 = multiprocessing .Pipe ()
8 p = multiprocessing . Process (target =child , args =(conn2 ,))
9 p. start ()
10
11 conn1 .send ([" hello there ", 42.0])
12 p.join ()

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Inter-Process Communication 27 of 31

Queues in Python

I The multiprocessing package also provides Queue(), which allows for multiple
producers and consumers.

1 import multiprocessing
2
3 def ch(q):
4 print ("recv:", q.get ())
5
6 if __name__ == ’__main__ ’:
7 q = multiprocessing . Queue ()
8 for i in range (10 , 13):
9 q.put ([i, float (i)])
10
11 ps = [multiprocessing . Process (target =ch , args =(q ,)) for _ in range (3)]
12 for p in ps:
13 p. start ()
14
15 for p in ps:
16 p.join ()

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Inter-Process Communication 28 of 31

Unix Domain sockets

Using socket API:
I Unix sockets AF_UNIX (can) have better performance than the internet protocols

AF_INET.
I Packet-oriented, but with sequence guarantees12: SOCK_SEQPAKET instead of SOCK_DGRAM

or SOCK_STREAM.
I socket.socketpair() can create a pair of connected sockets using Unix Domain

sockets, if available.
I Unix sockets can be bound to a file name.

I The file system then acts as name space.

1 import socket , multiprocessing
2
3 def child (conn):
4 print ("recv:", conn.recv (1024). decode ())
5
6 if __name__ == " __main__ ":
7 conn1 , conn2 = socket . socketpair ()
8 p = multiprocessing . Process (target =child , args =(conn2 ,))
9 p. start ()
10
11 conn1 .send("hey there !". encode ())
12 p.join ()

12 All packets arrive in order, unlike for UDP.

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Inter-Process Communication 29 of 31

Named pipes

A named pipe is a FIFO special file:
I Like an (anonymous) pipe, but bound to a file name.
I Once created with mkfifo it can be opened with ordinary file I/O operations. The

data, however, is not really written to a file system. The file system is only used as
name space.

I Reading blocks until another process writes to it. (Unless non-blocking I/O is used.)
I In C there is a function mkfifo() and in Python there is os.mkfifo().

1 mkfifo foo.fifo
2 ls -l foo.fifo
3
4 # Shell 1
5 cat - foo.fifo
6 # Shell 2
7 cat foo.fifo

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Inter-Process Communication 30 of 31

NGINX architecture

I Event-driven, asynchronous, non-blocking
I Preforked worker pool and shared-memory IPC
I Three-tiered architecture, FastCGI

Stefan Huber: 03: Client-Server Architectures Client-Server Architectures / Inter-Process Communication 31 of 31

	Client-Server Architectures
	Concurrency models for servers
	System architectures
	Inter-Process Communication

