02: Concurrent & Network Programming

Distributed Software Architectures

Stefan Huber <shuber.lba@fh-salzburg.ac.at>

March 22, 2019

Stefan Huber: 02: Concurrent & Network Programming 1 of 26

mailto:shuber.lba@fh-salzburg.ac.at

Section 1

Concurrent Programming

Stefan Huber: : Concurrent & Network Programming Concurrent Programming 2 of 26

Processes and threads

Process:
» Multi-tasking: An OS can execute multiple programs at a time.
» A process is an OS abstraction to provide a virtual processor with virtual memory.

» The OS isolates processes from each other: It gives the illusion of having exclusive
access to the processor and memory.
» Process control block contains information on:

> Process Id

CPU states: instruction pointer, registers, memory mapping, ...
Privilege information: user id, group id, ...

Resources: opened files, sockets, pipes, ...

vyy

> Processes hierarchy: Every process has a parent process.

Threads:
> Multi-threading: Multiple threads of execution in one process context.
> Threads operate on the process memory and with the process resources.

» Thread safety:
> Code is thread-safe if, when executed by multiple threads, there is no unintended

interference.
> Global states! may break thread safety; concurrent access must be taken into account.

B This includes static variables in C functions. Thread-safety requires at least re-entrancy.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 2 of 26

Process memory layout

© addresses

Memory layout

stack SIE
* return addr
local vars
* args
return addr
heap local vars
args
bss . | return addr
%| local vars
data Y
text -~

stack
frame

\Processor states

I\ stack pointer

instruction pointer

more register, ...

Figure: A simplified process memory layout and the relationship to processor registers. A “thread
of execution” refers to the processor states.

Stefan Huber:

Concurrent Programmi

3 of 26

Multi-threaded clients

Latencies:
» Communication in a distributed system may involve significant latencies.

> ldea: Hide latencies by doing something else while waiting.

Web browser:
> Has to fetch many resources besides referenced in an HTML document.
» Fetch them in parallel to avoid summing up latencies.
» Displaying content before having all resources fetched.

> Multi-threading simplifies implementation. For instance, each fetch can be
implemented with a simple blocking read.

> Multiple connections in parallel may utilize multiple web servers.

Electrolysis® is a multi-process architecture of Firefox. The parent process forks 4 child
processes to handle web content.® Each child process has a plethora of threads running.

2 https://wiki.mozilla.org/Electrolysis
Firefox 66 increases this to 8: https://bugzilla.mozilla.org/show_bug.cgi?id=1470280.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 4 of 26

https://wiki.mozilla.org/Electrolysis
https://bugzilla.mozilla.org/show_bug.cgi?id=1470280

Thread-level parallelism

» A modern web browser may create hundreds of threads.
> Most are probably not running most of the time but waiting.

> To what extent are those running in parallel?

Definition (Thread-level parallelism (TLP))

For a total of N threads let ¢; be the fraction of time where exactly i threads executed
simultaneously. Then we define

le'\lzli'ci

TLP = 1 o

» Modern web browsers have a TLP of 1.5 to 2.5.
» Hence, a processor with 2 to 3 cores could be utilized well.

» Moreover, the hundreds of threads are used with software architecture in mind.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 5 of 26

Multi-threaded servers

Servers deal with multiple clients, hence multi-threading is typically more important for
servers than clients.

> Simpler code.

» Higher performance.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 6 of 26

Multi-threaded servers

Example: File server
> Popular architecture: A dispatcher and multiple worker threads.
> Dispatcher thread receives requests from clients.

> Dispatcher distributes work to one of the worker threads.

> Worker thread performs the read with blocking reads on the file system.
Dispatcher \:\
Request /
1, . \:\ Pool of workers
Benefits:

» Parallel handling of clients, unlike for a single-threaded implementation with
blocking file 10.

> Simpler to implement than managing asynchronous calls with multiple clients.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 7 of 26

Benefits of concurrent programming

Performance gains:
» Parallel execution:

> Hyper-threading
> Multi-core processors
> Multiple processors

> |O:

> Native Command Queing (NCQ) of hard disks, RAID systems.
> Parallel fetch of web page resources to reduce serialized latencies.
> (Concurrent |0 can easily degrade performance, too!)

Software architecture gains:
» Modularization into concurrent modules as architecture.

» Simpler code, e.g., we can still use blocking 10 instead of asynchronous 10.
» Splitting up a process into multiple can improve security:

> Isolation mechanisms
> Finer privilege control

Concurrent programming does not imply parallel (simultaneous) execution.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 8 of 26

Concurrency in Python

Python documentation to concurrency:

> https://docs.python.org/3/library/concurrency.html

Modules in the Python Standard Library:
> threading
> multiprocessing

» and more. ..

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 9 of 26

https://docs.python.org/3/library/concurrency.html

Threading module

Thread class represents a thread:
> A callable object (e.g., function) can be passed to the constructor.
> The method start() starts the thread execution.

» The method join() waits until thread terminates.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 10 of 26

The Global Interpreter Lock

The standard Python interpeter (CPython) has a Global Interpreter Lock (GIL):
> No two threads can execute Python byte code at the same time.
> Makes access to Python data structures thread-safe.

» However, no parallelism for Python threads within a process!

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 11 of 26

The class Lock forms synchronization primitive:
» Can have two states: locked, unlocked
> The method release() unlocks a Lock.

» The method acquire() locks it.

> If it is unlocked, it gets locked and continues execution.
> It it is already locked, the calling thread gets blocked until another thread releases it.

» Can be used with with statement (context manager).

Stefan Huber: 02: Concurrent & Network Progr: Concurrent Programming 12 of 26

Side topic: Context Manager

When dealing with all kind of resources we often produce code like this:

VAR = EXPR # Creating file object, threading.Lock(), etc.
VAR .some_initialization() # Opening file, aquiring lock, etc.
try:
some_logic (VAR) # File I/0, accessing resource, etc.
finally: # No matter whether exzception has been raised
VAR .some_cleanup () # Closing file, releasing lock, etc.

This is a typical situation where the context manager protocol* can help:

Aquire and later release mylock in an exception-safe fashion
with mylock:
do_something ()

This translates basically to

mylock.__enter__ () # Does lock.acquire ()
try:

do_something ()
finally:

mylock.__exit__() # Does lock.release ()

4 See https://docs.python.org/3/reference/datamodel .html#context-managers and https://wwu.python.org/dev/peps/pep-0343/.

Stefan Huber: Concurrent Programming 13 of 26

oncurrent & Network Progral

https://docs.python.org/3/reference/datamodel.html#context-managers
https://www.python.org/dev/peps/pep-0343/

Barrier

The class Barrier makes all threads to wait for each other.
> A barrier is created for a number N of threads.

> The method wait() makes the thread wait until N threads called wait() and then all
threads are released simultaneously.

Stefan Huber:

Concurrent Programming 14 of 26

The class Event is a one-bit signal (flag).
> The method is_set() returns True iff flag is set.
> The method set () raises the flag and clear () resets it.
> The method wait() makes the thread wait until flag is raised.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 15 of 26

Multiprocessing module

The multiprocessing package provides a similar API to threading.
> The class Process is like Thread.
> The method start() and join() start execution and wait until termination.
» There is also Lock(), Event(), Barrier(), and the like.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 16 of 26

Multiprocessing module

The multiprocessing package provides a similar API to threading.

» The class Process is like Thread.

> The method start() and join() start execution and wait until termination.
» There is also Lock(), Event(), Barrier(), and the like.

But there is more:

> Processes have their own address space; we require Inter-Process Communication:
> The class Queue allows to put() and get() objects.

> The function Pipe() creates a pair of connection object.
> Shared memory.

> The class Pool allows to easily distribute computational load.

def f(x):
return x*x

if __name__ == "__main__":

with multiprocessing.Pool(5) as p:
print (p.map(f, [1, 2, 3]))

Processes are scheduled by the OS: No GIL between processes.

Stefan Huber: 02: Concurrent & Network Programming Concurrent Programming 16 of 26

Section 2

Network Programming

Stefan Huber: 02: Concurrent & Network Programming Network Programming 17 of 26

Reminder

Anwesenheitsliste nicht vergessen.

Stefan Huber: 02:

Network Programming 17 of 26

ISO OSI| Reference model

7 Application High-level APls, remote file access, resource sharing

6 Presentation Data translation including encoding, compression, encryption
5 Session Communication sessions with back-and-forth transmission

4 Transport Sending data segments and datagrams

3 Network Routing packets, addressing, traffic control

2 Data link Data frames between nodes

1 Physical Bit stream over physical medium

+—>

il

A reference model.
Each layer dedicated to a specific task.
Each layer builds upon the layer below, provides a service to the layer above
Software engineering aspects:
> Separation of concerns: Dedication to specific tasks, inner cohesion.
> A concrete layer implementation must be exchangeable: It must only rely on the
contract with the layer below and fulfills the contract to the layer above.

vvyVvVvy

Stefan Huber: 02: Concurrent & Network Programming Network Programming 18 of 26

Internet protocol suite

Application HTTP, FTP, DNS, IMAP, POP, SMTP, SSH, Telnet, ...
Transport TCP, UDP, ...

Internet IPv4, IPv6, ICMP, ...

Link Ethernet, WiFi, PPP, FDDI, ...
Link Link
layer IP Transport Application layer
header header header header Message trailer
Ethernet IPv4 TCP HTTP Webpage

Stefan Huber: 02: Concurrent & Network Programming Network Programming 19 of 26

Network tools

host DNS lookup utility
netstat Prints network connections, and more
nc Netcat is the TCP/IP swiss army knife
socat Socket cat, a mix of nc and cat
curl A command line data transfer tool by URL.
tcpdump Dumps traffic on a network

wireshark An extensive network analyzer for all kind of protocols

Stefan Huber: 02: Concurrent & Network Programming Network Programming 20 of 26

Berkley sockets:
> The API for communication, not only for Internet network communication:
> A socket is a communication endpoint.
» The communication happens between two sockets.

> A typical sequence of socket calls looks as follows:

server | client

s = socket()

s.bind()

s.listen() b = socket()

a = s.accept() | b.connect()

a.send()/recv() | b.send()/recv()
a.close() b.close()

s.close()

> The middle column is typically done repeatedly:

> In a single-threaded loop.
> In parallel threads.
> In a forked process.

Stefan Huber: 02: Concurrent & Network Programming Network Programming 21 of 26

Sockets in Python

import socket

See https://docs.python.org/3/library/socket.html

AF_INET = "Internet protocol", SOCK_STREAM = TCP, SOCK_DGRAM = UDP
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.bind (("127.0.0.1", 1200))

s.listen ()

a, addrinfo = s.accept ()
print("recv: ", a.recv(1024).decode("utf-8"))
a.send(bytes("greetings from server", "utf-8"))

a.close ()
s.close()

import socket

b = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
b.connect (("127.0.0.1", 1200))

b.send(bytes("greetings from client", "utf-8"))
print ("recv: ", b.recv(1024).decode("utf-8"))
b.close ()

Stefan Huber: Network Programming 22 of 26

A version for UDP

import socket

With SOCK_DGRAM we do not wuse listen() and accept ().
s = socket.socket (socket.AF_INET, socket.SOCK_DGRAM)
s.bind(("localhost", 1200))

print ("recv:", s.recv(1024))

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
We can use sendto() instead of connect () and send ().
s.sendto (bytes("hi!", "utf-8"), ("localhost", 1200))

Stefan Huber: Network Programming 23 of 26

Technical details

Timeouts:
» Operations are by default blocking operations.
> A timeout of x (float) seconds can be set by socket.socket.settimeout (x).

> If x is None then timeout is infinity.

Privileged ports:
> Ports below 1024 are privileged.

> On Unix-like operating systems superuser rights are required.

Stefan Huber: 02: Concurrent & Network Programming Network Programming 24 of 26

http.server

The module http.server implements a simple (non-production) HTTP server.

> https://docs.python.org/3/library/http.server.html

import http.server
import threading

A customized Handler class to process HTTP requests
class Handler (http.server.BaseHTTPRequestHandler):
def do_GET(self):
self.send_response (200)
self.send_header ("Content-type", "text/plain")
self.end_headers ()
self.wfile.write("Path was {}\n".format(self.path).encode())

if __name__ == "__main__":
server = http.server.HTTPServer ((’localhost’, 1080), Handler)
server_th = threading.Thread(target=server.serve_forever)

server_th.start ()

input ("Press <return> to exit")
server .shutdown ()

Stefan Huber:

Network Programming 25 of 26

https://docs.python.org/3/library/http.server.html

urllib.request

The module urllib.requests implements access to URLs in all detail.
» Authentication, SSL/TLS, redirections, cookies, ...
> https://docs.python.org/3/library/urllib.request.html
import urllib.request

if __name__ == "__main__":

Does actually a 303 Moved Permanently to https://...

with urllib.request.urlopen("http://www.sthu.org/monalisa.txt") as f:
print (f.read().decode ("utf-8"))

Stefan Huber:

Network Programming 26 of 26

https://docs.python.org/3/library/urllib.request.html

	Concurrent Programming
	Network Programming

