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1 Introduction

Many real-world and artificial processes deal with waiting queues of all kinds. In this lecture
on distributed software architectures we had contact with several examples, for instance:

• Message queuing systems are just made to deal with message-oriented communication
and message queuing.

• Queues are used for Inter-Process Communication.

• In a client-server architecture connection requests from TCP clients queue up until they
are accepted by means of the Berkeley socket API.

• In general, for all kind of I/O access we typically have to serialize access from multiple
parties by organizing them in queues.

There is a plethora of further examples in all kind of domains in which queuing systems play
an essential role, for instance, traffic systems, telecommunication systems, industrial factory
design and material flow analysis, shop design, hospital management, project management,
and so forth.

The field of queuing theory [1] deals with the analysis of formal queuing models. In this
lecture we concentrate on a simple model called M/M/1. It consists of a single queue in which
clients queue up and a single server that processes one client after the other, see figure 1. Typical
questions addressed by queuing theory are:
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(Q1) What is the average number of clients in the queue?

(Q2) What is the average throughput of the queuing system?

(Q3) What is the average waiting time for a client?

Those questions are stochastic in its nature and hence for a specific queuing model, like
M/M/1, we have to declare the stochastic models of clients arrival and service time in addi-
tion to the modalities on how clients are handled. The answers to the above questions then tell
us something about the response times for a TCP connection accepted by a server, the mem-
ory consumption of a queue in a message queuing system or the number of patients handled
in a hospital per day, assuming that the stochastic models correspond sufficiently well to the
problem at hand.

2 The M/M/1 queue model

The most simple example for a queuing system is the so-called M/M/1 queue. The notation
“M/M/1” follows the Kendall’s notation scheme [5], which describes all various kind of queuing
models. The general notation “A/B/k” specifies a stochastic model for the client arrival (A), a
stochastic model for the service handling (B) and the number (k) of servers. In our case M/M/1
stands for clients that arrive according to a so-called Poisson process (M) at rate λ, service times1

that follow an exponential distribution (M) at rate µ, and a single server (1), see figure 1.

µλ

Queue Server

Figure 1: The M/M/1 queue model according to Kandall’s notation.

One important result on M/M/1 queues is given by theorem 1, which gives us the proba-
bility distribution of the queue lengths. This theorem is a main ingredient in order to prove the
questions Q1–Q3. In order to prove this theorem we need to discuss the arrival distribution and
service distribution in further detail, which we skip until section 4.1.

Theorem 1. The M/M/1 model follows a geometric distribution for the random variable X of the queue
length. That is,

pk =

(
λ

µ

)k
·
(

1 − λ

µ

)
, (1)

with pk = P(X = k) denoting the probability that X has the value k ∈ N0.

Initially, of course, the queue is empty and does not follow the law given in theorem 1. If we
run a M/M/1 for an indefinitely long time, however, we observe the probability distribution
claimed in theorem 1. We then speak of a “stationary” distribution. More details are given in
section 4.1.

1The time a server needs to handle a single client.
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3 Performance analysis

For the following performance analysis we mostly follow van Steen and Tanenbaum [3], pages
16–17. We first define the utilization U of a service by the fraction of time where the server is
active:

Definition 1. The utilization U is defined by

U = 1 − p0 =
λ

µ
. (2)

Using this definition, we can rewrite eq. (1) as follows:

pk = Uk(1 − U) (3)

These p0, p1, . . . form the pdf2 of a geometric distribution G1−U with parameter 1−U, cf. [4]. In
other words, the random variable X of the length of a M/M/1 queue follows a G1−U distribu-
tion, written as X ∼ G1−U , for which the mean3 is well known:

E(X) =
U

1 − U
. (4)

This allows us to immediately answer our initial question Q1:

Lemma 2. The (long-term) average number N of clients in a M/M/1 queue is

N =
U

1 − U
=

λ

µ − λ
. (5)

Let us pause for a moment and discuss lemma 2 in more detail. If λ > µ then N < 0, which
is obviously flawed. This case, however, is already invalid as U would be greater than 1 by
eq. (2) and then the pk in eq. (3) do not form a pdf in the first place. Nonetheless, for a M/M/1
queue the case λ > µ would mean that the client arrival rate is larger than the service rate and
therefore the queue simply fills up indefinitely and therefore forms a trivial-pathological case
leading to N = ∞. The case µ = λ is interesting because eq. (5) says that N is infinite. In this
case the arrival rate equals the service rate and, prima vista, it may not appear sound that the
queue size actually becomes infinite. However, note that in a single experiment we may run a
M/M/1 queue for a long time but do not “observe” that the size grows straight towards infinity.
But what eq. (5) says is that if we consider the graph of the pdf pk then its center of gravity is at
infinity, and this just a different interpretation of E(X) = N. So if we run an experiment very
often for very long time then the average queue length tends towards infinity. To sum up, the
only legitimate case is λ < µ, in which case 0 ≤ U < 1. So let us make the assumption explicit
from now on that λ < µ.

In the next step we address the throughput X, which we define as average number of clients
that are handled by the service per time unit. Clients are only served when the service is active,
in which case the service rate is µ:

Definition 2. The throughput X is defined by

X = U · µ︸ ︷︷ ︸
Service active

+ (1 − U) · 0︸ ︷︷ ︸
Service inactive

= U · µ (6)

2Probability density function.
3E(X) = (1 − U)∑∞

k=0 kUk = ∑∞
k=0 kUk − ∑∞

k=0 kUk+1 = ∑∞
k=1 kUk − ∑∞

k=1(k − 1)Uk = ∑∞
k=0 Uk − 1 = U

1−U .
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As an immediate consequence of the definition we see that the throughput equals the arrival
rate of clients in lemma 3, which answers question Q2:

Lemma 3. The throughput X of an M/M/1 queue is

X = U · µ = λ. (7)

Although the lemma itself is trivial from a mathematical point of view, it is still interesting
that the throughput is not degraded by larger queue lengths, or dependent on µ for that matter.
Note that we require that µ > λ and from time to time the queue is becoming empty in the
sense that p0 > 0. That means, in an infinitely long time interval we handle all clients except an
indefinitely small fraction and therefore the throughput equals the arrival rate.4

For our next step we first require the following result from queuing theory by Little [2]:

Theorem 4 (Little’s law). Denoting by R the average time for a client until being served (response
time), it holds that

N = λ · R. (8)

This theorem is actually not limited to M/M/1 queues but to all kind of queuing system
that reach a so-called stationary state. In particular, note that the arrival and service distribution
plays no role in this formula. This theorem now answers Q3, the last of our questions:

Corollary 5. The average response time R for a client is

R =
N
λ

=
1

µ − λ
. (9)

This corollary says that when the arrival rate λ approaches the service rate µ then the average
response time tends to infinity. If the service rate µ is much larger then the arrival rate λ then
the response time is low.

4 Markov chains

In order to prove theorem 1 we use so-called Markov chains to model certain types of stochastic
processes. First, however, let us quickly recap the arrival distribution and service distribution
of a M/M/1 queue.

4.1 The M/M/1 queue as a stochastic process

Exponential distribution. In the M/M/1 model, the service time for a client follows an expo-
nential distribution with rate µ. The pdf of the exponential distribution Expµ is given by

[0, ∞) → [0, 1] : x 7→ µe−µx. (10)

and the mean is 1/µ. It is the continuous counterpart of the discrete geometric distribution and
like its counterpart it is memoryless.5

4If λ ≥ µ then the utilization U is saturated at 1 and X does not grow beyond µ, no matter how large λ gets. This is
what we sometimes observe in the waiting room of a doctor.

5Actually, these are the only two examples of memoryless distributions and it has to do with the fact that the only
functions f that satisfies f (a + b) = f (a) · f (b) and f (0) = 1 are the exponential functions x 7→ ecx .
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Memoryless. This is the key property here and can be explained by means of the following
example: Typical use cases for the exponential distribution waiting times for events, such the
waiting time X for the radioactive decay of an atom that happens at rate µ. Assume we waited
for the event for time b without success —we have the information X ≥ b therefore—then
this does not give as any information about the waiting time from know on.6 Hence, there is
no memory—the past does not matter—in the sense that the probability for X ≥ a + b if we
already know X ≥ b is just like we would start over again and consider the probability X ≥ a:

P(X ≥ a + b|X ≥ b) = P(X ≥ a).

Poisson process. The arrivals of clients of the M/M/1 queue are given by a so-called Poisson
process. Roughly speaking, a stochastic process describes the random evolution of a random
variable over time, e.g., Brownian motion of molecules in space (Wiener process) or the ar-
rival events of clients at a M/M/1 queue over time (Poisson process). In a Poisson process the
time between two consecutive events follows an exponential distribution and is therefore again
memoryless. In the context of stochastic processes, however, this property also called Marko-
vian and means that the faith of the process does not depend on the history but only the current
state.

Another example of a stochastic process is the (length of a) M/M/1 queue that evolves over
time in a random fashion. Since the arrival time and service time are both memoryless the
M/M/1 process is consequently memoryless as well.

4.2 The M/M/1 queue as a Markov chain

In general, a Markov chain is a Markovian stochastic process. Very often, however, it is also
assumed that the process evolves in a countable (or even finite) state space, and so do we. Then
we can distinguish between two types of Markov chains:

• Discrete-time Markov chains (DTMC), where the time evolves in discrete steps. The so-
called Bernoulli process is an example: Initialize X with zero and keep flipping a coin:
Add 1 for heads and 0 for tails.

• Continuous-time Markov chains (CTMC), where the time evolves continuously. Since
client arrival and service time is continuous, the M/M/1 queue is an example.

A DTMC is typically illustrated like a state machine (automaton) with a finite or a countable
infinite number of states and the state transition probabilities as weights on edges. A certain
state is the initial state and then in discrete steps a state transition happens with the given
probabilities. Hence, for each state the sum of the probabilities of the outgoing edges has to be
one. For the previously mentioned Bernoulli process, for instance, we get the DTMC in figure 2.

The above example is also time-homogeneous, which means that the transition probabilities
are independent of time. The generality of Markov chains make them a versatile tool for many
applications, for instance:

• Modeling the behavior of actors in games or real-world scenarios like traffic models.

• Modeling the behavior of software actors for automatic software testing.

6If we roll a dice and wait for the first occurrence of a six then knowing that we did not get six for the last k tries
does not tell anything about the waiting time for the first six from now on. This example is modeled by the discrete
geometric distribution, which is also memoryless.
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Figure 2: A discrete-time Markov chain of the Bernoulli process for a fair coin. It has a countably
infinite number of states.

• Modeling the states of communication protocols and asking for the likelihood to end up
in certain states.

• Google’s page rank algorithm is based on Markov chains.7

The M/M/1 queue, however, is a continuous-time Markov chain. We again use an illus-
tration similar to state machines, but instead of probabilities of state transitions we talk about
transition rates. Figure 3 depicts an illustration of the M/M/1 queue Markov chain, where we
have a transition rate of λ from state k to k + 1 and a transition rate of µ from state k + 1 to k, for
each k ∈ N0.

0 1 2 . . . k . . .
λ λ λ λ λ

µµµµµ

Figure 3: A continuous-time Markov chain of the M/M/1 queue.

Initially we start at state 0. Then a transition to state 1 happens at rate λ meaning that the
time until the transition happens is exponentially distributed with rate λ. When we are in state
k > 1 then two things can happen: a client arrives and we make a transition to k + 1 or the
server is done with handling the current client and we make a transition to k − 1. The former
happens at rate λ and the latter at rate µ. Both “event sources” together happen at rate λ + µ
and with probability λ/λ+µ the client arrival happens first and we make a transition to k + 1,
and with probability µ/λ+µ the server is done first and we make a transition to k − 1.8

We can now consider for any time t ≥ 0 the probability pk(t) that the Markov chain is in
state k. So for any fixed t ≥ 0 the pk(t) form a pdf. At time zero we are in state 0 and all the
probability mass is at state 0:

pk(0) =

{
1 for k = 0
0 for k > 0

.

Roughly speaking, as time passes probability mass is moving to higher states. If time goes
to infinity the Markov chain reaches a stationary distribution, if it actually possesses one. We
can actually consider the derivative p′k(t) which is proportional to

λpk−1(t) + µpk+1(t)− λpk(t)− µpk(t).
7One could consider a website visitor as process, the websites are the states and links are edges. The transition

probabilities could be uniform for each node. We could then ask which states are more likely visited and use this
probability to rank search results. Also note that the so-called stationary distribution of a finite DTMC is related to
spectral theory, namely the eigenvector to the eigenvalue 1.

8If X is exponentially distributed at rate µ and Y is exponentially distributed at rate λ then P(Y < X) = λ
λ+µ .
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This formula can bee seen as the “net in-flow” of “probability mass” for the state k. At t = ∞,
when we reach a stationary distribution, we therefore have p′k(t) = 0, which means that for all
k ≥ 1 we have

0 = λpk−1 + µpk+1 − λpk − µpk. (11)

We drop the time in the above equation as time does not play a role anymore in the stationary
situation. In some sense, we reached an equilibrium in the “flow of probability mass”. This
eq. (11) from the theory of Markov chains now allows us to prove theorem 1.

Proof of theorem 1. For k ≥ 1 we can rewrite eq. (11) and repeatedly re-substitute as follows:

µpk = λpk−1 + µpk+1 − λpk

= λpk−1 + (λpk + µpk+2 − λpk+1)− λpk

= λpk−1 + µpk+2 − λpk+1

We can repeat this re-substitution arbitrarily often and obtain for arbitrary n ≥ 0

µpk = λpk−1 + µpk+n+1 − λpk+n.

As the pk form a pdf we know that ∑∞
k=0 pk converges and therefore limn→∞ pn = 0. We can

use this fact in the above equation and obtain

pk =
λ

µ
pk−1 (12)

and after resolving the recursion we obtain

pk =

(
λ

µ

)k
· p0. (13)

Again using the fact that the pk form a pdf we obtain

1 =
∞

∑
k=0

pk

= p0 ·
∞

∑
k=0

(
λ

µ

)k

= p0
1

1 − λ
µ

which finally yields

p0 = 1 − λ

µ
(14)

pk =

(
λ

µ

)k
·
(

1 − λ

µ

)
. (15)
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