
05: Service-oriented and Resource-based Architectures
Distributed Software Architectures

Stefan Huber <shuber.lba@fh-salzburg.ac.at>

May 9, 2019

Stefan Huber: 05: Service-oriented and Resource-based Architectures 1 of 12

mailto:shuber.lba@fh-salzburg.ac.at

Section 1

Service-oriented Architectures

Stefan Huber: 05: Service-oriented and Resource-based Architectures Service-oriented Architectures 2 of 12

Service-oriented Architectures

What is a service?
I A key concept to object-base architectures is encapsulation.
I A service is a self-contained entity: it can live by itself.
I A service can make use of other services, but in essence operates independently. The

other services may actually be run by different organizations.

A SOA (Service-Oriented Architectures) separates an application into services.

Example: Web shop selling goods
I Application logic: Selecting ordered item, registering, checking delivery channels

(e.g., e-mail), checking payment.
I Payment could be a separate service, maybe run by a different organization.
I Delivery channel handling could be a separate service.

Example: Traveling website
I Multiple services of various airlines, hotels, car rental are used.

Stefan Huber: 05: Service-oriented and Resource-based Architectures Service-oriented Architectures 2 of 12

Misconceptions and fuzz

SOAs are like snowflakes – no two are alike.
– David Linthicum

SOA has become a well-known and somewhat divisive acronym. If one asks two
people to define SOA one is likely to receive two very different, possibly
conflicting, answers. – msdn.microsoft.com

Wrong myths about SOA:1

I SOA would require web services.
I SOA would be new and revolutionary.

[SOA is defined as] a loosely-coupled architecture designed to meet the business
needs of the organization. – msdn.microsoft.com

1
https://web.archive.org/web/20160206132542/https://msdn.microsoft.com/en-us/library/bb833022.aspx#_Introduction_to_SOA

Stefan Huber: 05: Service-oriented and Resource-based Architectures Service-oriented Architectures 3 of 12

https://web.archive.org/web/20160206132542/https://msdn.microsoft.com/en-us/library/bb833022.aspx#_Introduction_to_SOA

The Open Group SOA Working Group

The Open Group SOA Working Group provides the following definitions.2

Definition
Service-Oriented Architecture (SOA) is an architectural style that supports
service-orientation.

Definition
Service-orientation is a way of thinking in terms of services and service-based
development and the outcomes of services.

Definition
A service

I is a logical representation of a repeatable business activity that has a specified
outcome (e.g., check customer credit, provide weather data, consolidate drilling
reports),

I is self-contained,
I may be composed of other services, and
I is a black box to consumers of the service.

2
https://web.archive.org/web/20160819141303/http://opengroup.org/soa/source-book/soa/soa.htm

Stefan Huber: 05: Service-oriented and Resource-based Architectures Service-oriented Architectures 4 of 12

https://web.archive.org/web/20160819141303/http://opengroup.org/soa/source-book/soa/soa.htm

Interfaces

Each service defines its own interface.
I Traveling example: Each airline may define its own, different, interface.
I This makes service composition often non-trivial.
I A typical use-case of the Adapter3 design pattern.

3
https://en.wikipedia.org/wiki/Adapter_pattern

Stefan Huber: 05: Service-oriented and Resource-based Architectures Service-oriented Architectures 5 of 12

https://en.wikipedia.org/wiki/Adapter_pattern

W3C Web Services

The W3C defines a web service as follows:4

Definition
A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network.

I It has an interface described in a machine-processable format (specifically WSDL).
I Other systems interact with the Web service [...] using SOAP-messages [...].

Service
requester

Service
providerSOAP

Service
broker

UDDI

WSDL WSDL

UDDI (Universal Description, Discovery and Integration):
I A world-wide web service registry in the internet.
I In contrast, WS-Discovery is a multicast discovery protocol for a local network.

4
https://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice

Stefan Huber: 05: Service-oriented and Resource-based Architectures Service-oriented Architectures 6 of 12

https://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice

Zeep

The python package zeep provides a simple SOAP client to access web services:
1 pip3 install zeep
2 python3 -m zeep "http :// www. dneonline .com/ calculator .asmx?WSDL"

Example call to invoke the web service method Add:
1 import zeep
2
3 if __name__ == ’__main__ ’:
4 client = zeep. Client (’http :// www. dneonline .com/ calculator .asmx?WSDL ’)
5 result = client . service .Add (10 , 13)
6 print (result)

A more complex example of a SOAP API is provided by Amazon.5

5
https://docs.aws.amazon.com/AWSECommerceService/latest/DG/WSDLLocation.html,

http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl

Stefan Huber: 05: Service-oriented and Resource-based Architectures Service-oriented Architectures 7 of 12

https://docs.aws.amazon.com/AWSECommerceService/latest/DG/WSDLLocation.html
http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl

Section 2

Resource-based Architectures

Stefan Huber: 05: Service-oriented and Resource-based Architectures Resource-based Architectures 8 of 12

Resource-based Architectures

Issues with services:
I Service composition easily turned into a integration nightmare.
I E.g., SOAP client and server are quite tightly coupled by a contract (WSDL).

REST provides a different approach:
I Model: A distributed system interpreted as a collection resources.
I Resources can be added, removed, retrieved, modified.
I “Browsing” resources rather than invoking RPCs.
I Stateless communication, self-contained messages, uniform interface.
I A client can start using a REST API with zero knowledge about the API, in contrast

to SOAP.

REST is an architectural style, not a protocol.6

6 It may not make sense, but one could theoretically implement a REST architecture over SOAP.

Stefan Huber: 05: Service-oriented and Resource-based Architectures Resource-based Architectures 8 of 12

RESTful architecture

REST means REpresentational State Transfer
I Resources have states. A state has a representation (e.g., XML or JSON).
I REST is about the transfer of representations of states (of resources).

Basic principles:
I Client-server communication
I Stateless

The messages sent to and from the service are fully self-described. There is no
session state; the server forgets about the client after command execution.

I Cacheable
There might be a layer between client and server that caches responses. Retrieving a
state twice gives the same result (idempotence).

I Uniform interface
There is a single uniform interface to all components. There is a single naming
scheme (URIs) for resources. HATEOAS7: Only the initial URI but no further
knowledge is necessary for access; further information is dynamically given through
hypermedia.

7 Hypermedia As The Engine Of Application State. http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Stefan Huber: 05: Service-oriented and Resource-based Architectures Resource-based Architectures 9 of 12

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

REST via HTTP in practice

REST via HTTP in practice:
I Resource identifiers are URIs like http://www.example.com/book/341234
I The media type is the format of the representation, e.g., XML or JSON.
I Uniform interface using HTTP operations:

I PUT: Create a new resource (or overwrite the exiting one)
I DELETE: Delete a resource (if it exists)
I GET: Retrieve the state of a resource
I POST: Modify a resource8

I The HTTP operations GET, PUT and DELETE are by definition idempotent.
I The HTTP operation GET is cacheable.

1 curl " https :// api. github .com"
2 {
3 " current_user_url ": " https :// api. github .com/user",
4 [...]
5
6 curl " https :// api. github .com/ users / torvalds "
7 {
8 " login ": " torvalds ",
9 "id": 1024025 ,

10 [...]

8 Often, POST is applied to a resource that is a collection of elements in order to add a new element.

Stefan Huber: 05: Service-oriented and Resource-based Architectures Resource-based Architectures 10 of 12

http://www.example.com/book/341234

RESTful webservice in Python

Flask is a web development framework.
I pip3 install Flask

I It is based on Werkzeug and Jinja2.
I It provides a routing mechanism to handle URLs of some pattern.9

1 import flask
2
3 app = flask . Flask (__name__)
4
5 @app. route ("/")
6 def helloworld ():
7 return " Hello world "
8
9 @app. route ("/ users /<int:uid >")

10 def users (uid):
11 return "User with uid {}.". format (uid)

For RESTful services, however, there is an extension to Flask:
I pip3 install Flask-RESTful

I It adds features that remove manual work for implementing RESTful APIs.

9 The function app.route() is a decorator: It wraps around functions.

Stefan Huber: 05: Service-oriented and Resource-based Architectures Resource-based Architectures 11 of 12

RESTful webservices in Python

1 import flask
2 from flask_restful import Resource , Api
3
4 class EntryPoint (Resource):
5 def get(self):
6 # HATEOAS : Add URL to tell where to go
7 return {" message ": " Hello world !",
8 " items_url ": api. url_for (ItemList , _external =True)}
9

10 class ItemList (Resource):
11 def get(self):
12 return {" message ": "get all"}

I Resources modeled by classes that override get(), put(), delete(), post().
I The returned data structure is automatically converted to JSON.

1 app = flask . Flask (__name__)
2 api = Api(app)
3 api. add_resource (EntryPoint , "/")
4 api. add_resource (ItemList , "/ items ")
5 api. add_resource (Item , "/ items /<int:itemid >")

I Routing patterns are used when adding the resources to the API.

Stefan Huber: 05: Service-oriented and Resource-based Architectures Resource-based Architectures 12 of 12

	Service-oriented Architectures
	Resource-based Architectures

