
02: Digital I/O, instructions and programs, hardware abstraction
Microcontrollers

Stefan Huber
www.sthu.org

Dept. for Information Technologies and Digitalisation
FH Salzburg

Winter 2023

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction 1 of 24

www.sthu.org

Section 1

Digital I/O

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Digital I/O 2 of 24

Ports

Digital I/O is a basic feature of a microcontroller:
I The ATmega32 has ports A–D with 8 pins

each.
I They can be used to read or write logical 1 or

0 on each individually.

Ports often have alternate functions. For the
ATmega32:
I Port A: A/D converter
I Port B: SPI, etc.
I Port C: JTAG, two-wire serial, etc.
I Port D: USART, ext. interrupts, etc.

The Raspberry Pi has up to 6 alternative functions
for a pin.

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Digital I/O 2 of 24

Digital I/O basics

Digital I/O of each of port x is controlled by three registers1:
DDRx Data Direction Register: A bit 1 means output, a 0 means input.

PORTx Port Register: A bit 1 sets output voltage to logical 1, and otherwise 0 (if pin is
configured as output).2

PINx Port Input Register: A bit 1 means that the pin’s voltage reads as logical 1, and
otherwise 0.

Port A
01234567

DDRA: 11000001 0x83: pin 0, 1 and 7 are output, all others input
PORTA: 10000001 0x81: pin 0 and 7 drives high, pin 1 drives low
PINA: 10001101 0xb1: sense high at pin 0, 4, 5, and 7, all others low

1 See [ATmega32, p. 49].
2 And PORTx used to configure pull-up resistors for input pins, see later.

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Digital I/O 3 of 24

Digital I/O demo

Using bit operations, we read, write and flip bits in control registers.

1 #include <stdbool.h>
2 #include <avr/io.h>
3

4 int main() {
5 /* On port B, set pins 0..1 to output and pins 2..7 to input. */
6 DDRB = 0x03;
7

8 /* Change the output pins 0..1 to high on port B. */
9 PORTB |= 0x03;

10 /* Change the output pin 0 to low on port B. */
11 PORTB &= ˜0x01;
12 /* Flip pin 1 no port B (high to low, low to high). */
13 PORTB ˆ= 0x02;
14

15 /* Read level of pin 5 on port B. */
16 bool pin5 = PINB & (1 << 5);
17 }

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Digital I/O 4 of 24

Pin schematics

Protection diodes to Vcc and Gnd.

Configurable pull-up resistor of 20 kΩ to 50 kΩ:
I Without pull-up resistor an input pin is floating

if level is not driven.
Hence, pin is prone to noise, e.g., when using
mechanical switches.

I With a pull-up resistor the potential is pulled
to Vcc.
Hence, if pin is not driven (e.g. not connected)
then we read a logical one.
But if pin is driven to ground potential then we
have power consumption at the pull-up
resistor: The pull-up resistor acts as a load to
the driving potential of the pin.

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Digital I/O 5 of 24

Configuring pull-up resistors
For input pins the PORTx register configures the pull-up resistor:
I A bit 0 means without pull-up resistor, a bit 1 means with pull-up resistor.

Port A
01234567

DDRA: 11000001 0x83: pin 0, 1 and 7 are output, all others input
PORTA: 00001100 0x30: pin 4 and 5 with pull-up, pins 2, 3, and 6 without

1 #include <avr/io.h>
2

3 int main() {
4 /* On port B, set all pins to input. */
5 DDRB = 0x00;
6 /* Activate pull-up resistor for pins 0..3 (and deactivate for 4..7). */
7 PORTB = 0x0f;
8 }

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Digital I/O 6 of 24

Read-modify-write

Assume we want to change Pin 3 of Port B to output.
I In assembler there are instructions SBI, CBI to set or clear a bit atomically in one cycle.
I In C we use a read-modify-write access.

I This is not atomic! In fact, DDRB may have been altered between read and write, e.g., by an interrupt.

1 /* Change bit 3 of DDRB to 1. Does not happen in one cycle. */
2 DDRB = DDRB | (1 << 3);
3 /* In a shorter notation. */
4 DDRB |= (1 << 3);
5 /* There is a preprocessor definition for Port-B-Pin-3. */
6 DDRB |= (1 << PB3);

Code style
Prefer makro PB3 over 3, because PB3 tells you mean a pin, not just a number.

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Digital I/O 7 of 24

Datatypes in C

Standard arithmetic data types3 for (signed) integers in C and their minimum size are

Type char short int long long long
Min. size (bytes) 1 2 2 4 8

The actual size of the above data type is not defined by the C programming language. However, there
are common data models:

Model char short int long long long void*
IP16 1 2 2 4 8 2 avr-gcc4, MS-DOS
ILP32 1 2 4 4 8 4 typical 32-bit OS
LLP64 1 2 4 4 8 8 64-bit Windows
LP64 1 2 4 8 8 8 typical 64-bit UNIX-like OS

3 Since C99 there is a datatype for boolean values, too.
4 See [AVR-GCC-wiki] for details.

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Digital I/O 8 of 24

New data types in C99
The C99 standard adds inttypes.h as header file with platform independent integer data types:

Size in bytes signed unsigned
1 int8_t uint8_t
2 int16_t uint16_t
4 int32_t uint32_t
8 int64_t uint64_t

The C99 standard also adds a header file stdbool.h with a genuine boolean datatype bool.
1 /* A boolean is either false (0) or true (1). Tertium non datur! */
2 bool x = 2;
3 assert(x == true);
4 assert(x == 1);
5 assert(x != 2);

Code style
It is good practice to be explicit on the language standard, e.g., compiling with gcc -std=c99 -pedantic.

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Digital I/O 9 of 24

Bit handling in C

1 void bitdemo() {
2 uint8_t x, y;
3

4 /* x is binary 1010 0101. (A common test pattern.) */
5 x = 0xa5;
6 /* y is 0000 0001 shifted left by 6, which is 0100 0000. */
7 y = 1 << 6;
8 /* y is true if bit 6 of x is set. That is, if bit-6 of x is set then y is
9 * (1 << 6), otherwise 0. */

10 y = x & (1 << 6);
11

12 /* Set bit 3 of x. That is, bitwise or of x with 0000 1000. */
13 x |= (1 << 3);
14 /* Clear bit 2 of x. That is, bitwise and of x with 1111 1011. */
15 x &= ˜(1 << 2);
16

17 /* Double logicial negation: Turns *any* true into 1 and leaves false as 0. */
18 y = !!y;
19 }

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Digital I/O 10 of 24

Bit handling in C

1 void bitdemo() {
2 uint8_t x, y;
3

4 /* x is binary 1010 0101. (A common test pattern.) */
5 x = 0xa5;
6 /* y is 0000 0001 shifted left by 6, which is 0100 0000. */
7 y = 1 << 6;
8 /* y is true if bit 6 of x is set. That is, if bit-6 of x is set then y is
9 * (1 << 6), otherwise 0. */

10 y = x & (1 << 6);
11

12 /* Set bit 3 of x. That is, bitwise or of x with 0000 1000. */
13 x |= (1 << 3);
14 /* Clear bit 2 of x. That is, bitwise and of x with 1111 1011. */
15 x &= ˜(1 << 2);
16

17 /* Double logicial negation: Turns *any* true into 1 and leaves false as 0. */
18 y = !!y;
19 }

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Digital I/O 11 of 24

Bit handling with C macros
1 /** Returns a word with only bit-th bit set. Mind the parentheses! */
2 #define BIT(bit) (1ull << (bit))
3 /** Raise bit-th bit in word. */
4 #define BIT_SET(word, bit) ((word) |= BIT(bit))
5 /** Clear bit-th bit in word. */
6 #define BIT_CLR(word, bit) ((word) &= ˜BIT(bit))
7 /** Returns BIT(bit) if bit-th bit of word is set and zero otherwise. */
8 #define MASK_BIT(word, bit) ((word) & BIT(bit))
9 /** Returns a value "1" if bit-th bit of word is set and zero otherwise. */

10 #define BIT_IS_SET(word, bit) (!!((word) & BIT(bit)))
11

12 void bitdemo() {
13 uint8_t x=0xa5, y;
14 /* y is 0100 0000. */
15 y = BIT(6);
16 /* y is true if bit 6 of x is set. */
17 y = MASK_BIT(x, 6);
18 /* Set bit 3 of x. */
19 BIT_SET(x, 3);
20 /* Clear bit 2 of x. */
21 BIT_CLR(x, 2);
22 }

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Digital I/O 12 of 24

Section 2

Instructions and programs

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Instructions and programs 13 of 24

Instruction Set

The AVR CPU knows 131 instructions in five groups:
I Arithmetic and logical
I Branch

I Data transfer
I Bit and bit-test

I MCU control

Figure: See [ATmega32, p. 329].

There are two architectural styles for the instruction set: RISC and CISC

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Instructions and programs 13 of 24

Instruction Set Architectures: CISC versus RISC
Control units used to be hard-wired. Hardware design was more mature than compiler design. This gave
rise to complex instructions and complex control units.
It was realized that the control unit became a little “CPU” by itself: complex instructions formed by
micro instructions executed by the control unit.

CISC (Complex Instruction Set Computer):
I Instructions often take many cycles.
I Different instructions are encoded by codes of different lengths.
I Typically a register-memory architecture with complex memory addressing modes and ALU

operations can operate on memory directly.
1 % uname -om
2 x86_64 GNU/Linux
3 % objdump --disassemble /bin/ls
4 16c8c: c3 retq
5 16c8d: 0f 1f 00 nopl (%rax)
6 16c90: c3 retq
7 16c91: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)
8 % objdump --disassemble /usr/lib32/libm.so.6 # An x86 binary rather than x86_64

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Instructions and programs 14 of 24

Instruction Set Architectures: CISC versus RISC

RISC (Reduced Instruction Set Computer):
I Counter-movement to simple and hard-wired instructions. Typically a program uses only few

instructions most of the time (80/20 rule).
I Each instruction takes one or a few cycles only and is encoded by a fixed size.
I Complex instructions are substituted by a couple of simple ones.
I Typically a load/store architecture: ALU operations operate on registers only rather than directly in

memory. Hence, RISC computers often have many registers.
1 % uname -om
2 armv7l GNU/Linux
3 % objdump --disassemble /bin/ls
4 24ee8: e12fff1e bx lr
5 24eec: e59f300c ldr r3, [pc, #12]
6 24ef0: e3a01000 mov r1, #0
7 24ef4: e08f3003 add r3, pc, r3
8 24ef8: e5932000 ldr r2, [r3]

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Instructions and programs 15 of 24

Delay

A common machine instruction to all processors is NOP:
I No operation. Do nothing for a single cycle.
I Why does a NOP take a single cycle? Recall the CPU timing slide of last lecture.

1 #include <inttypes.h>
2 #include <avr/io.h>
3 #include <avr/cpufunc.h>
4

5 uint8_t readback(uint8_t x) {
6 PORTB = x;
7 /* We need to wait one cycle until we can read back PINB. See fig. 25 of
8 * ATmega32 data sheet. */
9 _NOP();

10 return PINB;
11 }

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Instructions and programs 16 of 24

Delay
Waiting for a specific time requires a specific number of NOPs. A helper function hides that from us.

1 #define F_CPU 8000000
2 #include <util/delay.h>
3

4 void toggle_portb_forever() {
5 while (1) {
6 PORTB = ˜PORTB;
7 /* There is also a _delay_us(). */
8 _delay_ms(1000);
9 }

10 }

I It needs to know the CPU clock rate in Hz via the preprocessor definition F_CPU.
I It assumes that compiler optimizations are not turned off.

Code style
Do not #define F_CPU in the source code, but pass it as compiler flag, e.g., avr-gcc -DF_CPU=8000000.
Hence, set this option in your Makefile or in your project configuration.

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Instructions and programs 17 of 24

Programming

Modify-compile-run on a general-purpose OS:
I The compiler outputs a binary that can be executed by the OS.

For a microcontroller:
I The development machine typically has a different architecture. It runs a cross-compiler to produce

output for a target architecture.
I Programming hardware – like the Atmel JTAGICE3 – takes a hex file, connects to the

microcontroller, writes the program into the Flash memory, and then the microcontroller resets to
execute the new program.

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Instructions and programs 18 of 24

Life cycle of a program

Microcontroller programs typically do not terminate.
I They typically do some initialization and then end in a closed loop of cyclic work.
I Unexpected stops are prohibitive in most control tasks.

I Unexpected C++ exceptions, out of memory situations, floating-point exceptions, invalid memory
access, et cetera must not happen or must be dealt with gracefully!

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Instructions and programs 19 of 24

Section 3

Hardware Abstraction

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Hardware Abstraction 20 of 24

Hardware Abstraction Layer

Even for small microcontroller software, we strive for a clean software architecture.
A simple three-layered architecture:

1 Application: a fan control
2 HAL: display, LED, analog input, network module
3 Hardware: COG 2x16 display, a led bar, potentiometer, ESP-01S WiFi module, . . .

Hardware Abstraction Layer (HAL):
I Hiding the details of hardware by offering a more abstract interface.

Hardware has a tendency to change, e.g., pin numbering schemes, offset addresses, timing details.
We want to hide those details.

I Strive for device-independent code.
In a good software architecture it is easy to replace5 things: Replacing one display by a different
one should not force us to rewrite the application on the top layer. Instead, we only should need to
provide a driver for the new display hardware. The application shall depend only an abstract display.

5 See also the Liskov substitution principle, which is the L in SOLID.

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Hardware Abstraction 20 of 24

HAL: LED example

Example LED:
I An abstract LED can be turned on, turned off, toggled and one can read the state.
I Hardware details are hidden: Setting port pin to output mode, maintaining or reading state when

toggeling, et cetra.

Concrete drivers in hardware layer:
I A physical LED connected to a port of the ATmega32
I A LED bar connected via a communication interface

However, the HAL presents an abstract LED to the application. The application does not depend on
the concrete driver.

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Hardware Abstraction 21 of 24

HAL: Wiring Pi Abstraction of pin numbering

The Raspberry Pi provides so-called GPIO pins which can be used for digital I/O and much more.
I The command pinout on Raspbian gives us a visual representation:

The GPIO pin numbering changed with hardware revisions of the BCM SoC.

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Hardware Abstraction 22 of 24

HAL: Wiring Pi Abstraction of pin numbering

Wiring Pi comes with a tool gpio for debugging.
I It shows the pin numbering and levels, can modify pins, output PWM signals, et cetera.

1 $ gpio blink 23 # Let GPIO 13 (wiring pi pin 23) blink
2 $ gpio readall
3 [...]
4 | 6 | 22 | GPIO.22 | IN | 1 | 31 || 32 | 0 | IN | GPIO.26 | 26 | 12 |
5 | 13 | 23 | GPIO.23 | OUT | 0 | 33 || 34 | | | 0v | | |
6 | 19 | 24 | GPIO.24 | IN | 0 | 35 || 36 | 0 | IN | GPIO.27 | 27 | 16 |
7 | 26 | 25 | GPIO.25 | IN | 0 | 37 || 38 | 0 | IN | GPIO.28 | 28 | 20 |
8 | | | 0v | | | 39 || 40 | 0 | IN | GPIO.29 | 29 | 21 |
9 +-----+-----+---------+------+---+----++----+---+------+---------+-----+-----+

10 | BCM | wPi | Name | Mode | V | Physical | V | Mode | Name | wPi | BCM |
11 +-----+-----+---------+------+---+---Pi 3B--+---+------+---------+-----+-----+

Wiring Pi hides these details by defining its own number scheme that hides changes in hardware.6

I The Wiring Pi number scheme leaves physical positions untouched, where as the BCM numbering
scheme may change.

6 Wiring Pi Pins. url: http://wiringpi.com/pins/

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Hardware Abstraction 23 of 24

http://wiringpi.com/pins/

Figure: The Linux kernel map. Source: https://www.makelinux.net/kernel_map/

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction Hardware Abstraction 24 of 24

https://www.makelinux.net/kernel_map/

References I

[ATmega32] ATmega32: 8-bit AVR Microcontroller with 32KBytes In-System Programmable
Flash. Atmel Corporation. Feb. 2011.

[AVR-GCC-wiki] AVR GCC. url: https://gcc.gnu.org/wiki/avr-gcc.
[ISO18037] Programming languages – C – extensions to support embedded processors. Standard

ISO/IEC TR 18037:2008. International Organization for Standardization, June 2008.
url: https://www.iso.org/standard/51126.html.

[wiringpi] Wiring Pi Reference. url: http://wiringpi.com/reference/.
[wiringpi-pins] Wiring Pi Pins. url: http://wiringpi.com/pins/.

https://gcc.gnu.org/wiki/avr-gcc
https://www.iso.org/standard/51126.html
http://wiringpi.com/reference/
http://wiringpi.com/pins/

Programming languages
Choice of the programming language:
I Limited amount of memory, special-purpose peripherals, programming close to hardware and direct

access to registers or memory.
I Dynamic memory allocation is often prohibitive, in particular for real-time systems.
I Still, there are projects like MicroPython for microcontrollers.

Assembly:
I Rarely used for development anymore, but still for debugging.
I Direct control over the sequence of machine instructions and timing.
I When compiler is not available or to emit certain machine instructions.

C:
I The typical choice for hardware-related and embedded software development.
I Some microcontrollers require non-standard dialects of C. Many manufacturers ship their own IDE

and/or own compiler.
I There is an embedded C standard [ISO18037], which adds, e.g., fixed-point arithmetic.

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction 25 of 24

Blink demo with Wiring Pi

1 #include <stdlib.h>
2 #include <unistd.h>
3 #include <wiringPi.h>
4

5 int main() {
6 /* WiringPi requires some setup. */
7 wiringPiSetup();
8 /* Make Wiring Pi pin 23 (GPIO 13 on model 3B) an output pin. */
9 pinMode(23, OUTPUT);

10

11 digitalWrite(23, HIGH);
12 usleep(200000);
13 digitalWrite(23, LOW);
14 return EXIT_SUCCESS;
15 }

Documentation:
I Wiring Pi Reference. url: http://wiringpi.com/reference/

Stefan Huber: 02: Digital I/O, instructions and programs, hardware abstraction 26 of 24

http://wiringpi.com/reference/

	Digital I/O
	Instructions and programs
	Hardware Abstraction
	Appendix

