
01: Introduction
Network Oriented Software

Stefan Huber
www.sthu.org

Dept. for Information Technologies and Digitalisation
FH Salzburg

Summer 2023

Stefan Huber: 01: Introduction 1 of 32

www.sthu.org

Section 1

Course formalities

Stefan Huber: 01: Introduction Course formalities 2 of 32

Outline of the course

The course network-oriented software engineering pursues two goals:
I Introduction to the Java programming language (and ecosystem)
I Distributed software systems

A rough outline:
I Introduction into the Java programming language

1 Java as an interpreted, strongly typed, imperative programming language
2 Object orientation in Java

II Concurrency in Java
3 Threads and processes, synchronization

III Distributed software systems
4 Network programming basics, sockets and client-server model
5 RMI and middleware
6 SOA, web services and REST

Stefan Huber: 01: Introduction Course formalities 2 of 32

Prerequisites

We assume that you have working knowledge from previous courses in the following fields:
I Programming in a strongly-typed, imperative programming language, like C or C++.
I Object oriented programming paradigms, like C++ or C#.
I Basics in computer networks and the TCP/IP protocol suite.
I Basics in the construction of operating systems.

Stefan Huber: 01: Introduction Course formalities 3 of 32

Course organization and grading

Blocking into lecture parts and lab parts:

Block 1: 2 VO + (2 LB)
Block 2: 2 VO + 2 LB
Block 3: 2 VO + 2 LB
Block 4: 2 VO + 2 LB
Block 5: 2 VO + 2 LB
Block 6: 2 VO + 2 LB
Block 7: + 2 LB
Block 8: 2 Ex.

Lecture part:
I Stefan Huber

Lab parts:
I Josef Lettner
I Andreas Klinger

Grading:
I 50 % final exam
I 50 % lab performance

Stefan Huber: 01: Introduction Course formalities 4 of 32

Passing and compensating

If your gradings sum up to at least 50 % then you passed.

Otherwise one of three cases applies:
I Only the exam is below 50 %.

You repeat the exam.
I Only the lab is below 50 %.

You get a compensation task. However, there is no compensation if you have less than 40 % at the
lab.1 Also, you cannot compensate a failed lab by improving at the exam.

I Each of them is individually below 50 %.
Then both of the above cases apply.

The dates for exams and compensation are given by fhsys:
I The exam is on this precise date.
I The compensation task is given at this precise date.

1 Because at some point you would need to compensate most of the entire course.

Stefan Huber: 01: Introduction Course formalities 5 of 32

Crediting

Crediting of the course is possible under these conditions:
I You have passed one or more university-level courses that cover the topics of this course.
I You have to obtain 80 % of the points on an crediting exam interview.

Stefan Huber: 01: Introduction Course formalities 6 of 32

Online course material and organization

Moodle courses and enrollment keys:
I ITBB4NWSIL: tarsier2oyster
I ITSB4NWSIL: otter8gaur
I WINB4NWSIL: Nh(4Sw#

Moodle will be used for material, quizzes and non-realtime interaction.

Teams teams and enrollment key:
I TEAM-ITS-NOS-2023-ss-WIN: ew12u1o
I TEAM-ITS-NOS-2023-ss-ITSB: ajury7z
I TEAM-ITS-NOS-2023-ss-ITSBB: 8si7zki

Teams will be used for realtime interaction, like online lectures and chat.

Stefan Huber: 01: Introduction Course formalities 7 of 32

Literature on Java

I Horstmann, Core Java Volume I and II. [HC18; Hor18]
Mostly good quality and easy to read. Very verbose with background information. Also useful for beginners
and often compares Java to C++.

I Herbert Schildt, Java complete reference [Sch18].
Well written, more compact than Core Java. A good book to lookup stuff.

I And there is more: [EF18; Blo17; Har13]
I There are a couple of Java books in our library; mostly older2 editions at the moment.

2 You do not require the latest editions of literature. Presumably the course will essentially rely on Java 9. Debian Buster ships Java 11.

Stefan Huber: 01: Introduction Course formalities 8 of 32

Literature on Distributed Systems

I van Steen and Tanenbaum, Distributed Systems [vT23]
I Huber, lecture notes on Distributed Software Architectures [Hub19]
I Stevens, UNIX Network Programming [Ste]

Stefan Huber: 01: Introduction Course formalities 9 of 32

More resources

Trust the specification! Question random code snippets on the web!
I Use the Java API Specification:

https://docs.oracle.com/en/java/javase/19/docs/api/index.html.
I There is also The Java Language Specification:

https://docs.oracle.com/javase/specs/jls/se19/html/index.html.

Web resources:
I https://en.wikipedia.org/wiki/Java_(programming_language)
I https://www.w3schools.com/java/default.asp

Stefan Huber: 01: Introduction Course formalities 10 of 32

https://docs.oracle.com/en/java/javase/19/docs/api/index.html
https://docs.oracle.com/javase/specs/jls/se19/html/index.html
https://en.wikipedia.org/wiki/Java_(programming_language)
https://www.w3schools.com/java/default.asp

Section 2

Basics of the Java language and ecosystem

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 11 of 32

The rise of Java

Software industry in the mid 90s:
I The industry is dominated by C.
I OOP was known to academia for two decades. The famous book Design Patterns by the Gang of

Four [Gam+94] was published in 1994.
I Software industry switches more and more to C++ and OOP is about to become the dominant

programming methodology. Microsoft MFC is first released in 1992.
I The WWW was in its childhood but business shows massive excitement, eventually leading to the

dot-com bubble between 1994 and 2000.
I Memory leaks and bad software design is omnipresent. Security is a mess.

Java’s first release was in 1996:
I Huge excitement. Buzzwords: clean, concise, easy, purely object-oriented, platform independent,

secure, internet ready, …
I Even mainstream media, like The New York Times and The Washington Post, mentioned it.

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 11 of 32

The rise of Java

Software industry in the mid 90s:
I The industry is dominated by C.
I OOP was known to academia for two decades. The famous book Design Patterns by the Gang of

Four [Gam+94] was published in 1994.
I Software industry switches more and more to C++ and OOP is about to become the dominant

programming methodology. Microsoft MFC is first released in 1992.
I The WWW was in its childhood but business shows massive excitement, eventually leading to the

dot-com bubble between 1994 and 2000.
I Memory leaks and bad software design is omnipresent. Security is a mess.

Java’s first release was in 1996:
I Huge excitement. Buzzwords: clean, concise, easy, purely object-oriented, platform independent,

secure, internet ready, …
I Even mainstream media, like The New York Times and The Washington Post, mentioned it.

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 11 of 32

Java is platform independent

Java programs are interpreted by the Java Virtual Machine (JVM):
I Java originally targeted at embedded devices, like TV switch boxes. A variety of different platforms

had to be supported.
I Java runs wherever you port the JVM to. Java is portable.

1 # Compile the Java code in HelloWorld.java to Java bytecode in HelloWorld.class
2 % javac HelloWorld.java
3 # Run HelloWorld.class by invoking the JVM
4 % java HelloWorld
5 Hello World

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 12 of 32

Java is platform independent

.class

Op. sys.

Hardware

JVM.java
javac

platform independet platform dependet

scalac
.scala

JVM byte codesource code

I The JVM is an abstract computing machine. It hides the details of the processor, like endianess,
size of registers, details of the floating-point unit and so on. It is architecture neutral.

I The JVM comes at additional runtime costs. Just-In-Time (JIT) compilers reduce those costs
significantly by translating the hotspots (often executed code snippets) on-the-fly and in-memory
into native machine code.

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 13 of 32

Java is object oriented

I Java is purely object oriented.
I In Java, all functions are class members and they are called methods.
I Even main() is a method, as in C#, but unlike in C and C++.

1 /**
2 * The hello world class.
3 */
4 public class HelloWorld {
5 /** This is the program's entry point. */
6 public static void main(String args[]) {
7 // Purely object oriented: The System class contains an object out,
8 // which provides a method println() to print-a-line.
9 System.out.println("Hello world");

10 }
11 }

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 14 of 32

A first step into the Java language

I Syntax close to the C-family, like C++, Objective-C or C#:
Curly braces {} for blocks, whitespace is ignored, single-line comments // and multi-line comments
/**/, double quotes delimit strings.

1 public class HelloWorld {
2 /** This is the program's entry point. */
3 public static void main(String args[]) {
4 // Purely object oriented: The System class contains an object out,
5 // which provides a method println() to print-a-line.
6 System.out.println("Hello world");
7 }
8 }

I The class HelloWorld must reside in the file HelloWorld.java.
I Each class has its own file. Case sensitive names, also for the filenames.
I When the JRE looks for the bytecode of the class A then it looks for the class file A.class.

I If a class contains a public static void main() method then the class can be executed as a program
by the Java interpreter.

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 15 of 32

Java is an environment

I Java comes with a whole environment, the Java Runtime Environment (JRE).
I The JRE contains the JVM but also the Java standard library with thousands3 of classes.
I For development you need a Java Development Kit (JDK).

I There are different editions, we use the Standard Edition (SE).
I Most current version is Java SE 19. Debian Buster ships version 11, which is fine.

1 # Debian Buster ships a Java 11 JRE (Java Runtime Environment):
2 % java -version
3 openjdk version "11.0.18" 2023-01-17
4 OpenJDK Runtime Environment (build 11.0.18+10-post-Debian-1deb11u1)
5 OpenJDK 64-Bit Server VM (build 11.0.18+10-post-Debian-1deb11u1, mixed mode, sharing)

3 Java 12 comes with 4433 classes, Java 5.0 with 3279 classes, Java 1.3.1 with 1840 classes.

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 16 of 32

Java ships a documentation generator

I Javadoc comments start with /** and allow to generate source code documentation.
I These are used to comment files, classes and its members and similar entities.

I Javadoc takes those comments and generates an HTML documentation of those entities.

1 /** The obligatory hello world.
2 *
3 * This is a hello world demo that not only demonstrates the main() method,
4 * println() and strings, but also javadoc comments.
5 *
6 * @author Stefan Huber <stefan.huber@fh -salzburg.ac.at>
7 */
8

9 /**
10 * The hello world class.
11 */
12 public class HelloWorld {

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 17 of 32

Data types

Java is strongly typed:
I Every variable has a declared type.
I If a value is assigned to a variable, or an argument is passed to a function, the types are checked.

There are two categories of types:
I Primitive types
I Non-primitive types, e.g., class types, arrays, enums et cetera.

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 18 of 32

Primitive types
1 /** The Java language knows exactly eight primitive types. */
2 class PrimitiveTypeDemo {
3 public static void main(String args[]) {
4 byte a = -0x0a; // A signed 8-bit integer. Hex literals as in C.
5 short b = 0b1010; // A signed 16-bit integer. Binary literals since Java 7.
6 int c = 1_000_000; // A signed 32-bit integer. Underscores since Java 7.
7 long d = 42L; // A signed 64-bit integer. Long literals by suffix L.
8

9 float e = 3.1416f; // IEEE 754 single-precision floating -point number.
10 double f = 1.256e-6; // IEEE 754 double-precision floating -point number.
11

12 char g = '€'; // A character. (Actually, a UTF-16 code unit.)
13 boolean h = true; // There is only true or false, and no third!
14

15 System.out.printf("%d %d %d %d %f %f %c %b\n", a, b, c, d, e, f, g, h);
16 }
17 }

I 0x12, 1.41f, 3.14, 'A', false, "Hi" and so on are called literals, and they have a type.
I Note that the C and C++ standards do not define the sizes of integer data types! This is why C99

introduced platform-independent types like int32_t.
Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 19 of 32

Operators
The following operators work (almost) as in C:
I Arithmetic: + - * / % and its assignment counterparts += -= *= /= %=

I Incremental: x++ ++x x-- --x

I Relational: == != <= >= < > Produce a bool

I Logical: ! && || Take and produce bool

I Bitwise: & | ^ ~ << >> and its assignment counterparts Java knows a zero-padding >>>

1 class OperatorsDemo {
2 public static void main(String args[]) {
3 assert 13 + 5 == 18; // Call java with -ea to enable assertions
4 assert 5 / 13 == 0; // Integer division
5 assert 1.0 / 2.0 == 0.5; // Be careful: Floating -point equality!
6 assert 1.0f + 0.00000001f == 1.0f; // Numerical errors break exact equality
7

8 //assert 3 >= 2 && 7; // Syntax error: 7 is not boolean
9 //assert 3 == true; // Syntax error: cannot compare int and bool

10 assert false; // We expect that to fail
11 }
12 }

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 20 of 32

Operator precedence

If no parenthesis are used, like (x && y)== z, then the operator precedence defines which operators bind
tighter. From highest to lowest:

Access and call [] . () left to right
Unary ! ~ ++ -- + - ()(cast)new right to left
Binary * / \% left to right

+ - left to right
<< >> >>> left to right
< <= > >= instanceof left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right

Ternary ?: right to left
Assignment = += -= *= /= &= |= ^= <<= >>= >>>= right to left

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 21 of 32

Math and conversion

The class Math contains a couple of mathematical functions:

1 System.out.println(Math.log(Math.E)); // Prints 1.0
2 System.out.println(Math.atan(0.5 * Math.PI)); // Should be 1.0
3 // abs, min, max, round, floor, ceil, sqrt, pow, exp, log, log10, ...
4 // sin, cos, tan, asin, acos, atan, atan2, sinh, ...

A type cast performs an explicit type conversion: int x = (int)0.5

I Those conversions are done automatically, but the dotted lines may come at numerical loss:
byte short int long

char float double

I Numerical expressions with mixed number types cause type promotions:
I 3 * 2.0 will carry out a double-multiplication as 3 is automatically promoted to 3.0.
I int x = 3 * 2.0 is illegal in Java and would require a cast.

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 22 of 32

Strings

I A string is a sequence of Unicode characters.
I A string is actually an instance of the class String.

I This class provides more than 50 methods.
I We expect that you consult the API specification when required.

I Java has no operator overloading, unlike in C++.
I However, the Java language explicitly defines + on strings as concatenation.

I Strings are immutable; they cannot be changed.

1 class StringDemo {
2 public static void main(String args[]) {
3 String str = "Alan Turing";
4 System.out.println(str.length()); // 11
5 System.out.println(str.substring(2, 7)); // "an Tu"
6 System.out.println(str + " rocks!"); // "Alan Turing rocks!"
7 }
8 }

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 23 of 32

Equal versus identical

I The operator == on objects tests whether they are the same instances.
I This is different from testing whether they are equivalent w.r.t. their data or state.

1 class StringEqualityDemo {
2 public static void main(String args[]) {
3 String str1 = "Hello";
4 String str2 = str1 + "";
5

6 System.out.println(str1 != str2); // Not identical , different instances
7 System.out.println(str1.equals(str2)); // But two equal instances
8 }
9 }

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 24 of 32

Empty versus null

I When a variable is null then it refers to no object.
I Of course, an empty string is not the same as a null object.

1 class EmptyNullDemo {
2 public static void main(String args[]) {
3 String notmuch = "";
4 String notatall = null;
5

6 System.out.println(notmuch.length()); // 0
7 System.out.println(notatall == null); // true
8 //System.out.println(notatall.length()); // Runtime error: NullPointerException
9

10 // Lazy evaluation: As notatall != null is already false the second
11 // operand of && is not evaluated. Similar with ||.
12 System.out.println(notatall != null && notatall.length() > 0); // false
13 System.out.println(notatall == null || notatall.length() == 0); // true
14 }
15 }

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 25 of 32

Variable scopes and control flow

I Control flow structures are essentially those of the C-family.
I The scope (life range) of a variable is the surrounding {}-block.

1 System.out.println("Fibonacci series …"); // Btw., also code is in unicode
2 int a = 1, b = 0;
3 while (b < 100) { // Each {}-block defines a scope for variables
4 System.out.print(b);
5 System.out.print(" ");
6

7 int c = a + b; // A variable lives only within its scope
8 b = a;
9 a = c;

10 } // c does not live outside this block anymore
11 System.out.println();
12

13 int n = 1;
14 int fac = 5;
15 for (int i = 1; i <= fac; ++i)
16 n *= i;
17 System.out.printf("%d factorial is %d\n", fac, n);

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 26 of 32

Control flow

1 // Execute as long as condition is true
2 while (bool_cond) {
3 // bool_cond must be of type bool:
4 // if (7) {} is illegal in Java!
5 if (bool_cond) {
6 continue; // Goto start of inner loop
7 } else {
8 break; // Exit inner loop
9 }

10 }
11

12 for (init_expr; bool_cond; post_expr) {
13 // Equivalent to {
14 // init_expr;
15 // while (bool_cond) {
16 // { block }
17 // post_expr;
18 // }
19 // } The scope of init_expr is the loop
20 }

1 do { // Do not repeat when
2 // condtion becomes false.
3 } while (bool_cond);
4

5 switch (choice) {
6 // byte, char, int, …
7 case constant_integer:
8 break;
9 case enum_constant:

10 break;
11 // Since Java 7
12 case "constant_string":
13 break;
14 default:
15 break;
16 }
17

18 // There is actually a "tame goto":
19 // A break to a labled block.

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 27 of 32

Arrays
Arrays in Java are similar to dynamic C++ arrays.
I The class java.util.Arrays contains many helper methods like string conversion and comparison.

1 import java.util.*; // We need java.util.Arrays
2

3 class ArraysDemo {
4 public static void main(String args[]) {
5 int[] a = new int[6]; // Uninitialized
6 for (int i=0; i < a.length; ++i) // a.length gives the array size
7 a[i] = i * i;
8 System.out.println(Arrays.toString(a));
9

10 int[] b = {0, 1, 4, 9, 16, 25};
11 System.out.println(Arrays.equals(a, b));
12

13 int sum = 0;
14 for (int elem : b) // Java 5 has a foreach loop, as C++11
15 sum += elem;
16 System.out.println(sum);
17 }
18 }

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 28 of 32

Multi-dimensional arrays

1 import java.util.*;
2

3 class MultidimArrayDemo {
4 public static void main(String args[]) {
5 // Initialized with all zeros
6 int[][] tictactoe = new int[3][3];
7 System.out.println(Arrays.deepToString(tictactoe));
8

9 // A ragged array: A multi-dim array is an array of arrays, unlike in C++.
10 int[][] hashtable = {{ 1, 2, 3, 4},
11 { 10, 20},
12 { 100, 200, 300}};
13 System.out.println(Arrays.deepToString(hashtable));
14 System.out.println("hashtable[0][3] = " + hashtable[0][3]);
15 for (int[] row : hashtable)
16 System.out.println("Row = " + Arrays.toString(row));
17 }
18 }

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 29 of 32

Java is robust and secure

Java has been designed to be robust and secure:
I Java is memory-managed so there are no use-after-free or double-free memory errors because a

garbage collector frees memory.
I Java has no concept of a pointer so there is no invalid pointer dereference error.
I Array access is checked at runtime to eliminate out-of-bound access. This eliminates buffer

overflow attacks.
I Java comes with security policies.

Personal opinion
The above reasons, plus Java’s simplicity, plus its enterprise features4, are probably main reasons why
Java became very popular for business and finance software, and replaced PL/I and COBOL.

4 Java EE, EJB, …

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 30 of 32

Coding conventions

All Java code follows very similar coding conventions:
I CamelCase for identifiers, like variables, classes and so on.
I Classes and other types start with upper case, all others with lower case.5

I Hence, Java source files have CamelCase filenames, too.

Code Style
You shall follow these conventions!

5 So-called interfaces, which are like C++ classes with pure virtual functions only, also start with upper case letters.

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 31 of 32

Preparations for the lab

For the lab assignment we need the following software:
I Oracle Java SE JDK
I Git
I Editor

Debian Linux: apt install default-jdk git

Windows:
I https://git-scm.com/download/win
I https://www.oracle.com/java/technologies/javase-downloads.html

I If you are a Windows user, check that javac is in the PATH environment variable.6

I https://notepad-plus-plus.org/ or any other editor
I Later you may find the Eclipse IDE, IntelliJ IDEA, NetBeans or VSCode handy.

6 See https://docs.oracle.com/javase/9/install/installation-jdk-and-jre-microsoft-windows-platforms.htm

Stefan Huber: 01: Introduction Basics of the Java language and ecosystem 32 of 32

https://git-scm.com/download/win
https://www.oracle.com/java/technologies/javase-downloads.html
https://notepad-plus-plus.org/
https://docs.oracle.com/javase/9/install/installation-jdk-and-jre-microsoft-windows-platforms.htm

Section 3

Lab: Formalities and grading

Stefan Huber: 01: Introduction Lab: Formalities and grading 33 of 32

Coding assignments and Moodle quizzes

There will be coding assignments for homework
I Assignments are published on the Moodle course.
I Every student develops in their own git repository to send in his solutions.
I Solutions are presented and discussed in the next lab.

Major-minor code review:
I Major: Code solutions that are reviewed in more detail with feedback.
I Minor: A quick, superficial check of your submission.

10 minute Moodle quizzes take place at the beginning of each lab.
I Test quiz today to test the setup.

Stefan Huber: 01: Introduction Lab: Formalities and grading 34 of 32

Grading

The lab performance is graded as follows:
I 40 % Moodle quizzes

Top 5 of 6 are counted. That is, worst result of six is ignored. If you miss a lab then this quizz is
ignored.

I 40 % major code review
I 20 % minor code review

Stefan Huber: 01: Introduction Lab: Formalities and grading 35 of 32

Section 4

Lab 1: Java and git warm ups

Stefan Huber: 01: Introduction Lab 1: Java and git warm ups 36 of 32

Fast forward: Setting up your git config

Check that you have your name and e-mail address set in git. Those will be part of git commit
messages later.

1 $ git config --get user.name
2 YOUR NAME AS FIRSTNAME LASTNAME
3 $ git config --get user.email
4 YOUR MAIL ADDRESS

Those can actually be set system-wide, globally (for your user) and per repository. If not set already and
you are unsure then simply set:

1 # Of course, use your name and e-mail address below
2 $ git config --global user.name "firstname lastname"
3 $ git config --global user.email "user@fh-salzburg.ac.at"

Stefan Huber: 01: Introduction Lab 1: Java and git warm ups 37 of 32

Fast forward: Setting up your solutions repo

1 Open https://its-git.fh-salzburg.ac.at/ in a browser.
2 Login with your FH-User and click on the button New project.
3 Choose project name of the form nos-ss2023-firstname-secondname and replace “firstname”

and “secondname” accordingly.
4 Leave visibility level at Private.
5 Click on the button Create project.

6 Right of the SSH dropdown button the URL of this repo is shown and has the form
git@its-git.fh-salzburg.ac.at:username/nos-ss2023-firstname-secondname.git.
Copy it.

7 Open https://etherpad.wikimedia.org/p/nos-ss2023 and paste the URL under the right
heading.

8 On its-git switch on the left menu to Settings/Members, select the lab instructor as member,
choose Maintainer as role, and click on Add to project.

Stefan Huber: 01: Introduction Lab 1: Java and git warm ups 38 of 32

https://its-git.fh-salzburg.ac.at/
https://etherpad.wikimedia.org/p/nos-ss2023

Fast forward: Setting up your access

Create SSH keys if you do not have some already.
1 Open a terminal (like git bash) and enter ssh-keygen

I When you asked about the path, press enter.
I When you asked about the password, press enter (or enter a password).

2 When done enter cat ~/.ssh/id_rsa.pub and copy the content.
3 Switch to the browser with its-git, open the user menu on the right top and click on Settings.
4 Choose SSH Keys on the left menu.
5 Paste your key and click Add key.

Now we are ready to grab a copy of the repository:
I Copy your project URL again.
I Switch to the terminal and enter git clone YOURPROJECTURL.

Stefan Huber: 01: Introduction Lab 1: Java and git warm ups 39 of 32

Fast forward: A quick demo on uploading data

Open the terminal and switch to your repository.

Enter these commands
1 git status # Gives some status info, like 'No commits yet'
2 echo "My repository" > README.md
3 git add README.md
4 git commit -m "Add README"
5 git push

Open a web browser with its-git and check that your commit is online.

Warning
You need to push your solutions until the deadline! Check on the web whether your solutions are online!

Stefan Huber: 01: Introduction Lab 1: Java and git warm ups 40 of 32

A quick intro into VCS

Version control systems (VCS):
I Also known as revision control or source (code) control.
I Solves two problems:

I Keeping track of the evolution of files, in particular source code files.
Kills zip files that mark versions of the source code.

I Supports and enables collaboration in a controlled fashion.
Kills careful (often manual) merges of source changes into a central file server directory. Kills file
boundaries as responsibility boundaries for team members.

1 # Switch to some working directory first...
2 git init demo-01 # Create repository demo-01
3 cd demo-01 # Switch to directory demo-01
4 echo "test" > test.txt # Create file with some content
5 git add test.txt # Add file to repo(sitory)
6 git commit -v -m "My first commit" # Commit file to repo
7 echo "another line" >> test.txt # Modify the file
8 git status # Show status of the repo
9 git diff # Show uncommited changes

Stefan Huber: 01: Introduction Lab 1: Java and git warm ups 41 of 32

A quick intro into DVCS

Two kinds of version control systems (VCS):
Centralized The older, traditional approach. Basically like a central database or specialized file server

that manages the commits and the history.
Examples: CVS, subversion, TFS (TFVC), …

Distributed The modern approach. Every repository is full-fledged and autonomous, and therefore
driven by the open source community.
Examples: git, mercurial, BitKeeper, …

Distributed VCS (DVCS), and in particular git, became the industry standard in the past decade.

Stefan Huber: 01: Introduction Lab 1: Java and git warm ups 42 of 32

Resources on git

I Git comes with extensive documentation, e.g., git --help and git diff --help print help and show
the man pages of the respective commands, respectively.

I The Pro Git book is online: https://git-scm.com/book/en/v2
I A git cheat sheet:

https://github.github.com/training-kit/downloads/github-git-cheat-sheet.pdf
I A view videos: https://git-scm.com/doc

Windows users often like GitExtensions as GUI:
I https://gitextensions.github.io/

Stefan Huber: 01: Introduction Lab 1: Java and git warm ups 43 of 32

https://git-scm.com/book/en/v2
https://github.github.com/training-kit/downloads/github-git-cheat-sheet.pdf
https://git-scm.com/doc
https://gitextensions.github.io/

Local work with git

Initializing git
I You can turn any directory into a git repo by git init

I It creates a directory .git with the git object database and more

HEAD f9211a4b

b1d237ba

46d07dd4G
ro
w
th

A commit is a change to files.
I A commit refers to a parent commit. The commits are

therefore linked together.7
I Often like a linked list.
I But a merge commit has two parents.

I A commit contains additional meta information (author, date)
and a commit message.

I A commit is identified by its SHA1 hash.
I A unique prefix suffices to identify a commit.

7 It is a so-called directed acyclic graph.

Stefan Huber: 01: Introduction Lab 1: Java and git warm ups 44 of 32

A few thoughts on a commit

I Commits should be logically coherent, like a single bug fix or a single functionality.
I Commits can be very small if the change makes sense by itself. Commits can be very large and

touch many files, e.g., when refactoring names.
I Write meaningful commit messages. If the message tells many stories than you should probably

split the commit up. Linus Torvalds on commit messages, see [Tor].

If you violate these principles then merging branches will become a hell later on.

Stefan Huber: 01: Introduction Lab 1: Java and git warm ups 45 of 32

Exercise

1 Create a directory git-demo-02 and add a HelloWorld.java that prints “Hello world”.
2 Initialize a git repository in the directory, add the source file and commit it.
3 Change the source file in some way. Then play with these commands:

I git log, git status, git diff

4 Add a file README.txt with some content. Commit using
I git commit -av

5 Play again with these commands:
I git log, git status, git diff

6 Change both files in some way. Commit again using
I git commit -v HelloWorld.java

7 Play again with these commands:
I git log, git status, git diff

Stefan Huber: 01: Introduction Lab 1: Java and git warm ups 46 of 32

Distributed work with git

In a typical collaborative workflow there is a central git repository.
I The local repositories then synchronize with the central one.
I We start by cloning the remote repo with git clone URL.
I Then we pull changes from the remote side and push changes to the remote side by git pull and

git push.

master

46d07dd4 master 46d07dd4

pushf9211a4b

b1d237ba

Local Remote

Stefan Huber: 01: Introduction Lab 1: Java and git warm ups 47 of 32

Distributed work with git

In a typical collaborative workflow there is a central git repository.
I The local repositories then synchronize with the central one.
I We start by cloning the remote repo with git clone URL.
I Then we pull changes from the remote side and push changes to the remote side by git pull and

git push.

master

46d07dd4 46d07dd4

f9211a4b

b1d237ba

pushf9211a4b

b1d237ba

master

Local Remote

Stefan Huber: 01: Introduction Lab 1: Java and git warm ups 47 of 32

Distributed work with git

In a typical collaborative workflow there is a central git repository.
I The local repositories then synchronize with the central one.
I We start by cloning the remote repo with git clone URL.
I Then we pull changes from the remote side and push changes to the remote side by git pull and

git push.

46d07dd4 46d07dd4

f9211a4b

b1d237ba

master

master

pull

Local Remote

Stefan Huber: 01: Introduction Lab 1: Java and git warm ups 47 of 32

Distributed work with git

In a typical collaborative workflow there is a central git repository.
I The local repositories then synchronize with the central one.
I We start by cloning the remote repo with git clone URL.
I Then we pull changes from the remote side and push changes to the remote side by git pull and

git push.

master

46d07dd4 46d07dd4

f9211a4b

b1d237ba

f9211a4b

b1d237ba

masterpull

Local Remote

Stefan Huber: 01: Introduction Lab 1: Java and git warm ups 47 of 32

Your personal NOS git repository

Your repository must follow the following directory structure:
1 your-nos-git-repo/
2 01/
3 YourSolutionToAssignmentA.java
4 YourSolutionToAssignmentB.java
5 YourSolutionToAssignmentC.java
6 02/
7 YourSolutionToAssignmentA.java
8 ...

That is, put all your solutions of unit 01 into a subdir 01. This is part of the grading.

You have to git-push your solution to the git server until the deadline!

Stefan Huber: 01: Introduction Lab 1: Java and git warm ups 48 of 32

References I

[Blo17] Joshua Bloch. Effective Java. 3rd ed. Addison-Wesley Professional, 2017, p. 412. isbn:
978-0134685991.

[EF18] Benjamin J. Evans and David Flanagan. Java in a Nutshell: A Desktop Quick Reference.
7th ed. O’Reilly UK Ltd., 2018, p. 436. isbn: 978-1492037255.

[Gam+94] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
1st ed. Addison-Wesley, 1994, p. 395. isbn: 0-201-63361-2.

[Har13] Elliotte Rusty Harold. Java Network Programming: Developing Networked Applications.
4th ed. O’Reilly and Associates, 2013, p. 500. isbn: 978-1449357672.

[HC18] Cay S. Horstmann and Gary Cornell. Core Java Volume I – Fundamentals. 11th ed.
Prentice Hall Press, 2018, p. 889. isbn: 978-0135166307.

[Hor18] Cay S. Horstmann. Core Java Volume II – Advanced Features. 11th ed. Pearson Education,
2018, p. 1040. isbn: 978-0135166314.

[Hub19] Stefan Huber. Distributed Softate Architectures. Lecture notes. 2019. url:
https://www.sthu.org/teaching/#lecture-notes.

https://www.sthu.org/teaching/#lecture-notes

References II

[Sch18] Herbert Schildt. Java: The Complete Reference. 11th ed. McGraw-Hill Education, 2018,
p. 1248. isbn: 978-1260440232.

[Ste] W. Richard Stevens. UNIX Network Programming. url:
http://www.unpbook.com/src.html.

[Tor] Linus Torvalds. Contributing to subsurface. url: https:
//github.com/subsurface/subsurface/blob/master/README.md#contributing
(visited on 02/27/2021).

[vT23] Maarten van Steen and Andrew S. Tanenbaum. Distributed Systems. 4th ed. Jan. 2023.
isbn: 978-9081540636.

http://www.unpbook.com/src.html
https://github.com/subsurface/subsurface/blob/master/README.md#contributing
https://github.com/subsurface/subsurface/blob/master/README.md#contributing

02: Object Orientation
Network Oriented Software

Stefan Huber
www.sthu.org

Dept. for Information Technologies and Digitalisation
FH Salzburg

Summer 2023

Stefan Huber: 02: Object Orientation 1 of 35

www.sthu.org

Section 1

Classes and Objects in Java

Stefan Huber: 02: Object Orientation Classes and Objects in Java 2 of 35

OOP in Java

We assume you know these four aspects of object-oriented programming (OOP):
I Abstraction

Hiding details and complexities of inner workings, exposing simplicity
I Encapsulation

Cohesion of data and code, data hiding, forming “has-a” relationships
I Inheritance

Hierarchical subtyping, forming “is-a” relationships
I Polymorphism

Type-depending behavior, overriding behavior in subtypes

Stefan Huber: 02: Object Orientation Classes and Objects in Java 2 of 35

Classes in Java

OOP languages organize code in classes.
I In Java, all code is in classes; it is purely OOP.
I Each class A is implemented in a source file A.java.1

I The keyword class followed by the class name defines a class.

1 /** The class A is implemented in A.java */
2 class A {
3 }

1 Well, there are also inner classes and static inner classes. And non-public classes can be legally defined without matching filename.

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 3 of 35

Class members

A class comprises
I Properties implemented as fields

(member variables)
I Functionality implemented as methods

(member functions)

1 /** A natural person. */
2 class Person {
3 /** The name of the person .*/
4 private String name;
5

6 /** Returns the name of the person. */
7 public String getName() {
8 return name;
9 }

10 }

Each of them has one of four access specifiers that specify visibility:

private can only be accessed within the class
protected see later, (can be accessed from derived classes)
default see later, (can be accessed from the same package)
public can be accessed from everywhere

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 4 of 35

Object creation

An instance of a class is called object.
I In Java, the operator new creates class instances.

1 Person p = new Person();

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 5 of 35

Variable versus object

The variable is not the object:
I We say that the variable binds to the object; it is an alias.
I Multiple variables may bind to the same object.

1 Person a = new Person();
2 Person b = new Person();
3 Person c = a; // Binds to the same object as 'a'.
4 c.setName("Joe"); // The Person behind 'a' and 'c' is called "Joe" now

After the above code we have three variables bound to two objects.

a

b

c

"Joe"

null

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 6 of 35

Parameter passing
Parameters behave like variables and they are passed by value.
I But think of the variable per se being passed by value, not the object it binds to!

1 public void f(Person p, Person q) {
2 // Both parameters now bind to the same object.
3 p = q;
4 // We change the object that p (and q) binds to.
5 p.setName("Joe");
6 }
7

8 public void test() {
9 Person alice = new Person();

10 Person bob = new Person();
11 f(alice, bob);
12 // bob's name is now "Joe", but not alice's.
13 }

alice

bob

p

q

null

null

Remember
Java variables are more like C++ pointer variables, but without giving access to the actual addresses.

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 7 of 35

Parameter passing
Parameters behave like variables and they are passed by value.
I But think of the variable per se being passed by value, not the object it binds to!

1 public void f(Person p, Person q) {
2 // Both parameters now bind to the same object.
3 p = q;
4 // We change the object that p (and q) binds to.
5 p.setName("Joe");
6 }
7

8 public void test() {
9 Person alice = new Person();

10 Person bob = new Person();
11 f(alice, bob);
12 // bob's name is now "Joe", but not alice's.
13 }

alice

bob

p

q

null

null

p = q

Remember
Java variables are more like C++ pointer variables, but without giving access to the actual addresses.

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 7 of 35

Parameter passing
Parameters behave like variables and they are passed by value.
I But think of the variable per se being passed by value, not the object it binds to!

1 public void f(Person p, Person q) {
2 // Both parameters now bind to the same object.
3 p = q;
4 // We change the object that p (and q) binds to.
5 p.setName("Joe");
6 }
7

8 public void test() {
9 Person alice = new Person();

10 Person bob = new Person();
11 f(alice, bob);
12 // bob's name is now "Joe", but not alice's.
13 }

alice

bob

p

q

null

"Joe"

p = q

Remember
Java variables are more like C++ pointer variables, but without giving access to the actual addresses.

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 7 of 35

Inheritance

A class can extend (derive from, inherit from) one class, its superclass.
I In Java, the keyword extends is used.
I The derived class is also called subclass. The superclass is also called base class.

1 class Student extends Person {
2 }

A class inherits all properties and functionality from its superclass.
I The access specifiers of the superclass are taken over.
I A class can access protected members of its superclass.

There is no multiple inheritance in Java.2

I Also, if a class does not extend any class then it implicitly extends the class Object.
I Conclusion: The class hierarchy in Java is a tree with Object at its root.

2 But there are also interfaces, and they admit multiple inheritance.

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 8 of 35

Inheritance: an “is-a” relation

When Student extends Person then for the type system a Student is a Person.
I A Person variable can bind to a Student object.
I Hence, we can pass a Student argument for a Person parameter.
I The Liskov substitution principle3 takes is-a verbatim.

1 // A Student is a Person: A Person variable can bind to a Student object
2 Person p = new Student();

Static versus dynamic type4

I The variable p has the static type Person.
I But since it binds to a Student object it has the dynamic type Student.

3 This is the L of the SOLID principles of OOP.
4 Dynamic means “changing over time”, i.e., an aspect at runtime. Static means “not changing over time”, i.e., fixed at compile time.

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 9 of 35

Characteristics of objects and relationships between classes

Three characteristics define an object:
State What properties does an object posses?

Behavior What can an object do?
Identity What distinguishes two objects from each other?

Three basic relationships exist between classes:
Inheritance The is-a relationship between subtype and supertype.
Association The has-a relationship between a class and its field.5

Dependency The uses-a relationship when methods of one class modify or uses (instances of) other
classes.

5 Associations may be categorized into Aggregations and Compositions. In an aggregation the child can exist without the parent, i.e., there is an aggregation from lecture to students; destroying
a lecture does not kill students. Aggregation is typical for shared ownership of the child. In a composition the child cannot exist without the parent, i.e., there is composition between a house and
its rooms; there are no rooms without the house. Compositions means unique ownership.

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 10 of 35

Default field initialization

The following default initialization is applied:

Types Literals
Booleans false
Numerics zero, e.g., 0, 0l, 0.0f, 0.0, '\u0000'
Objects null

Code style
It is poor style to rely on default initialization:
I Explicitly initialize fields instead!

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 11 of 35

Constructors

The new operator for object creation calls a constructor:
I Like a method whose name is the class name and no return type.
I Primarily used to initialize the object’s state.

1 class Person {
2 private String name; // Initialized to null by default
3

4 /** The default (no-argument) constructor of Person. */
5 Person() {
6 name = "";
7 }
8

9 /** Create a Person with given name. */
10 Person(String name) {
11 /* While 'name' is the parameter , 'this.name' is the field 'name' of the
12 Person-instance 'this'. And 'this' is an implicit parameter to all methods. */
13 this.name = name;
14 }
15 }

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 12 of 35

More constructors

There can be more than one constructor:
I The no-argument constructor has zero parameters.
I Java knows method overloading. The overload resolution is based on argument types:

1 // Since a String is passed as argument , the ctor Person(String) is deduced
2 Person p = new Person("Joe");

If no constructor is defined then there is an implicit no-argument constructor:
I It essentially does nothing.
I Hence, if there is at least one constructor then there is no implicit no-argument constructor.

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 13 of 35

Constructors calling constructors

I In the first statement of a constructor we can call another constructor of this class using this.
I This way, code duplication in constructors can be reduced. (C++ 11 knows that too.)

1 class Person {
2 private String name;
3 private int age;
4

5 Person() {
6 this("");
7 }
8 Person(String name) {
9 this(name, 0);

10 }
11 Person(String name, int age) {
12 this.name = name;
13 this.age = age;
14 }
15 }

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 14 of 35

Constructor of the superclass

I In the first statement of a constructor, we can also call the constructor of a base class using super.
1 /** A Student is a special Person. */
2 class Student extends Person {
3 /** Matriculation number. */
4 private int matnumber;
5

6 /** Create a Student by its name and matriculation number. */
7 Student(String name, int matnumber) {
8 // Initialize the Person-part of Student by calling a Person-constructor.
9 super(name);

10 // Initialize non-Person-fields
11 this.matnumber = matnumber;
12 }
13 }

I If a class does not explicitly call a superclass constructor then the no-argument constructor of the
superclass is implicitly called. If it does not have one – also no implicit one – the compiler reports
an error.

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 15 of 35

Field initialization

In general, a field can be initialized in the following
ways:
I At the field declaration.
I In an initialization block, but this is very

uncommon.
I In a constructor.

1 class Person {
2 private String name = "";
3 private int dayofbirth;
4

5 { // Initialization block
6 int ms = System.currentTimeMillis();
7 dayofbirth = ms / 1000 / 60 / 60 / 24;
8 }
9

10 Person() {
11 }
12

13 Person(String name) {
14 this.name = name;
15 }
16

17 Person(String name, int dateofbirth) {
18 this.name = name;
19 this.dateofbirth = dateofbirth;
20 }
21 }

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 16 of 35

Object destruction

There are no destructors to free allocated memory. But sometimes we still need to release resources
when an object is destructed.
I Java knows the finalize methods, which is called before the garbage collector destroys the object.
I But there is no guarantee when the garbage collector does so. This is typically undesirable.

Remember
It is better to be explicit on freeing up resources instead of using the finalize method. See
try-with-resource as the better alternative later in the lecture.

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 17 of 35

Packages

In Java it is possible to group classes in packages.
I Package names (except the standard Java ones) start usually with a domain name in reverse, e.g.

at.ac.fhsalzburg.nos. It is a naming convention in Java to use lower case characters for package
names only.

I With the help of packages, the uniqueness of class names can be guaranteed, as classes with the
same name in different packages can still be differentiated. It is similar to namespaces in C++.

1 package com.example;
2

3 class A {
4 }

I Packages can be nested into each other, for example java.util is nested in java. For the compiler,
there is no relationship between nested packages.

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 18 of 35

Packages and directories

The class com.example.A resides in the file com/example/A.java, so nested packages indicate nested
directories.
I The package instruction says in which package classes are defined.

1 package com.example;
2 public class Person {
3 ...

Listing: com/example/Person.java

1 package com.example;
2 public class Student {
3 ...

Listing: com/example/Student.java

� com

� example

� Person.class

� Person.java

� Student.class

� Student.java

Figure: Directory structure.

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 19 of 35

Access modifiers for class elements

The table of access modifiers and their visiblity for fields and methods:

Modifier Class Package Derived class ’Outside’
public Y Y Y Y
protected Y Y Y N
default Y Y N N
private Y N N N

Remember
Default means “package protected”, so declare your fields private to ensure encapsulation!

Also classes have access modifiers, and only public classes can be accessed outside the package.
1 public class Person {
2 }

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 20 of 35

Class importation

A class can use all classes that are in its own package as well all public classes from others.
I This can either be done by adding the full package name in front of every class name, or by using

the import statement.
I This is like using namespaces in C++ and not like #include statements.

1 import com.example.*; // Import all classes from package com.example
2 import com.example.nos.Person; // Import this specific class

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 21 of 35

Final fields

The value of fields defined as final cannot be change after initialization (cf. const in C++).
I Fields declared as final must be initialized upon object construction.
I A final field of a class type cannot re-bind to different object, but the object can be modified!

(Different to C++!)
I Hence, useful for fields whose type is immutable (e.g. String) or primitive.

1 class Person {
2 final Person mother;
3 final Person father;
4

5 Person (Person mother, Person father) {
6 this.mother = mother;
7 this.father = father;
8 }
9 }

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 22 of 35

Static fields

I A static field is like a “class field” rather than an “object field”.
I It exists exactly once, even if no or multiple instances have been created.
I Static variables are rather rare, static constants more common.

1 class Physics {
2 final static double VACUUM_PERMEABILITY = 1.256e-6; // H/m
3 final static double SPEED_OF_LIGHT = 300e6; // m/s
4 }
5

6 class Person {
7 static int totalCount = 0;
8 final int id;
9

10 Person () {
11 totalCount++;
12 id = totalCount;
13 }
14 }

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 23 of 35

Static methods

I Static methods do not operate on an object; they can be called by classname.method()

I They can access static fields and static methods.
I They cannot access this or object fields.
I The main method does not operate on an object, which is why it is a static method.

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 24 of 35

Class design guidelines

I Always keep fields private.
I Always initialize fields.
I Not each field always needs individual getter and setter methods.
I If a class has too many fields with a basic type then maybe the class should be split.
I If a class violates the single-responsibility principle then break it up.

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Encapsulation and Inheritance 25 of 35

Polymorphism
Polymorphism means “many forms”:
I A variable Person p can have many “forms”, e.g., the one of a Student.

1 class Person {
2 public String describe() {
3 return "Name is " + getName();
4 }
5 }
6 class Student extends Person {
7 public String describe() {
8 return "Name is " + getName() + " and stud ID is " + getStudID();
9 }

10 }

I The key, however, is that the behavior is determined by the dynamic type, not the static type. This
is called dynamic binding of the variable to the object: The right method is chosen at runtime.

1 Person p = new Student();
2 // Dynamic type is Student: Student.describe() is called!
3 System.out.println(p.describe());

I Polymorphism in Java is done by method overriding.
Stefan Huber: 02: Object Orientation Classes and Objects in Java / Polymorphism in Java 26 of 35

Overriding methods

If we reimplement a method of a class in a subclass then we override it.
I That is, we replace the behavior of this method for this subclass. (How is this in C++?)
I The overridden method must have the same signature (method name and parameter list) and

return type. The visibility cannot be more strict. (Why?)
I It is highly recommended to add the annotation @Override to the method definition:

Then the compiler can check our intention. Common mistakes, like having the wrong parameter
types or misspelling the method name, are less likely. We would accidentally overload rather than
override the method.

I We can access the original version of the superclass by using super instead of this. (In C++?)

1 class Student extends Person {
2 @Override
3 public String describe() {
4 return super.describe() + " and stud ID is " + getStudID();
5 }
6 }

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Polymorphism in Java 27 of 35

Dynamic binding and method call resolution

When a method of an object is called:
I First the dynamic type of the object is determined.
I Then all methods of the given name for this type and its superclasses are determined. The overload

resolution finds the best suiting method by matching argument types to the parameter types.
I It then calls the overridden method version of the most special type.
I In Java all methods are polymorphic (i.e., virtual in C++). However, by adding the keyword final to

the method definition we can explicitly forbid overriding.

Attention
The final keyword has different meanings for different entities: Constant fields, non-overridable
methods or non-inheritable classes.

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Polymorphism in Java 28 of 35

Casting and type testing

Upcasting6 is done automatically:
1 Person p = new Student();

But downcasting requires an explicit cast:
1 void f(Person p) {
2 // I know I got a Student
3 Student stud = (Student) p;
4 }

I This is done in C-style syntax, but behaves more like a dynamic_cast in C++. That is, it checks at
runtime whether Student is a suitable static type for the variable binding to the object behind p.

I There is also an operator instanceof to check this.
1 if (p instanceof Student) {
2 Student stud = (Student) p;
3 }

6 Up in the inheritance hierarchy

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Polymorphism in Java 29 of 35

Abstract classes

Sometimes a method cannot be meaningfully implement but is supposed to be overridden.
1 class GeometricShape {
2 public void rotate(double angle) {
3 // I know how to rotate a Triangle, but an "abstract" GeometricShape?
4 }
5 }

Java knows abstract classes for this use case:
I The class must be declared abstract to allow abstract methods.
I An abstract method has no implementation block.
I Hence, we cannot call this method. Hence, there cannot be an instance of this class! Hence, this

class can only be a static type of a variable, not a dynamic type.
I Every non-abstract subclass must override this method.

1 abstract class GeometricShape {
2 public abstract void rotate(double angle);
3 }

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Polymorphism in Java 30 of 35

The Template method pattern

The idea is that abstract classes define a “contract”.
I If x instanceof GeoemtricShape then x provides a rotate(), so we can use it.

What we see below is an application of the Template method design pattern.
1 class GeometricShapeCollection {
2 GeometricShape[] shapes;
3

4 public void rotate(double angle) {
5 // Rotate them all
6 for (GeometricShape s : shapes)
7 s.rotate();
8 }
9 }

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Polymorphism in Java 31 of 35

Interfaces

There is no multiple inheritance for classes, but for interfaces.
I An interfaces is not a class, but a set of requirements that a class has to fulfill. If at all, it would be

similar to an abstract-only class, e.g., they cannot be instantiated.
I An interface may only declare methods (implicitly public abstract) and define constant fields

(implicitly public static final).
I However, a class can implement multiple interfaces. And an interface can extend multiple

interfaces.

1 interface Comparable {
2 int compareTo(Object o);
3 }
4

5 interface Hashable {
6 int hashCode();
7 }

1 class Person implements Comparable, Hashable {
2 public int compareTo(Object o) {
3 // TODO. You recall instanceof and casting?
4 }
5 public int hashCode() {
6 // TODO
7 }
8 };

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Polymorphism in Java 32 of 35

Cloning: Obtaining a copy

Binding a second variable to the same object does not copy it. To obtain a copy we have to clone() it.
1 Person p = new Person();
2 Person q = (Person) p.clone();

I Note that clone() of Object is protected. So you have to override it and make it public.
I Also, implement the Cloneable interface, otherwise CloneNotSupportedException is thrown by Object.

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Polymorphism in Java 33 of 35

Shallow versus deep

Two types of clones:
Deep copy If the field of the object is cloned, too. Typical for composition due to unique ownership.

Shallow copy If the field is not cloned.

car1 engine1

car2 engine2

deep clone()

car1 vehicleowner

car2

shallow clone()

Stefan Huber: 02: Object Orientation Classes and Objects in Java / Polymorphism in Java 34 of 35

Section 2

Some further remarks

Stefan Huber: 02: Object Orientation Some further remarks 35 of 35

Parameter naming

There are several strategies to differentiate between instance fields and parameters
I Single-letter or non-meaningful or non-expressive variable names make code harder to read
I Fields and parameters can have the same name, but the latter could start with a prefix
I Parameters shadow fields having the same name. When accessing the parameter just use the name,

when referring to the field use this.fieldname

Stefan Huber: 02: Object Orientation Some further remarks 35 of 35

03: Exceptions and Concurrency
Network Oriented Software

Stefan Huber
www.sthu.org

Dept. for Information Technologies and Digitalisation
FH Salzburg

Summer 2023

Stefan Huber: 03: Exceptions and Concurrency 1 of 26

www.sthu.org

Section 1

Exceptions

Stefan Huber: 03: Exceptions and Concurrency Exceptions 2 of 26

Traditional error handling

Exception handling is the object-oriented way of error handling.

Traditional error handling strategies:

I Return value of functions encodes error state.
I Error states are stored in a global variable, like libc’s errno.

Issues with the traditional style:
I Global commitment how error numbers are to be interpreted. Hard to generalize, hard to extend,

hard to manage, hardly possible to change.
I Additional information on the nature of the error is cumbersome to manage.
I Error handling logic grows, propagates and distributes through the entire code.

Stefan Huber: 03: Exceptions and Concurrency Exceptions 2 of 26

Traditional error handling

Exception handling is the object-oriented way of error handling.

Traditional error handling strategies:
I Return value of functions encodes error state.
I Error states are stored in a global variable, like libc’s errno.

Issues with the traditional style:
I Global commitment how error numbers are to be interpreted. Hard to generalize, hard to extend,

hard to manage, hardly possible to change.
I Additional information on the nature of the error is cumbersome to manage.
I Error handling logic grows, propagates and distributes through the entire code.

Stefan Huber: 03: Exceptions and Concurrency Exceptions 2 of 26

Exceptions basics

Exceptions enable us to decouple the recognition of the error from the error handling:
I Recognition: When an error situation happened, we throw an exception instance.
I Handling: At dedicated places we catch the exception instances and handle them.

Java takes care for passing the exception from the recognition to the handling:
1 try {
2 // The code in here may throw an exception
3 if (error)
4 throw new MyException();
5

6 // Or in a nested method call an exception might be thrown
7 myAlsoThrow();
8 }
9 catch (Exception e) {

10 // The code to handle the exception.
11 }

Stefan Huber: 03: Exceptions and Concurrency Exceptions 3 of 26

A minimal example

Examples:
I IOExcecption is thrown when an I/O operation failed, like reading data from a file.
I FileNotFoundException is thrown when we attempt to open a non-existing file to read from.

1 /** Demonstrates catching exceptions. */
2 class ExceptionMinimal {
3 public static void main(String args[]) {
4 try {
5 // Documentation says it may throw a FileNotFoundExcpetion
6 java.io.InputStream is = new java.io.FileInputStream("doesnotexist.txt");
7 }
8 catch (java.io.FileNotFoundException e) {
9 System.out.println("Got the exception:");

10 e.printStackTrace();
11 }
12 }
13 }

Stefan Huber: 03: Exceptions and Concurrency Exceptions 4 of 26

Catching different exceptions

The general syntax for exception catching is as follows:
1 try {
2 // Code that may throw
3 }
4 catch (ExceptionType1 e) {
5 // Handle all exceptions that are of (sub) type ExceptionType1.
6 }
7 catch (ExceptionType2 e) {
8 // Handle all exceptions that are of (sub) type ExceptionType2.
9 }

10 // and more
11 finally {
12 // This is executed, no matter whether exception has been thrown or not.
13 }

The first catch block that matches the type handles the exception.
I All (checked) exceptions derive from Exception, so catching type Exception catches them all.

Stefan Huber: 03: Exceptions and Concurrency Exceptions 5 of 26

Types of exceptions
Every exception derives from Throwable:
I Error captures internal errors of the JRE.
I Exception captures the errors that originate from your application.

I RuntimeException captures programming errors, like ArrayIndexOutOfBoundsException.

Throwable

Error Exception

RuntimeException others

Java knows two types of exceptions:
I Unchecked exceptions derive from Error and RuntimeException. We do not anticipate those.1

I Checked exceptions are all others. These can been seen as contract between provider and caller.
1 Where would we catch them? “Everywhere”?

Stefan Huber: 03: Exceptions and Concurrency Exceptions 6 of 26

Checked exceptions

Java is very strict on catching or not catching checked exceptions:
I If a method throws (or passes on) a checked exception then it has to declare so!
I This is done by the keyword throws after the parameter list.

1 /** Demonstrates not catching exceptions. */
2 class NoCatchDemo {
3 // Without this throw clause we get this compiler error:
4 // NoCatchDemo.java:11: error: unreported exception IOException; must be
5 // caught or declared to be thrown
6 public static void main(String args[]) throws java.io.IOException {
7 System.out.println("Press any key...");
8

9 // This method may throw an IOExcpetion but we do not catch it. Hence,
10 // main() may throw an IOException.
11 System.in.read();
12 }
13 }

Stefan Huber: 03: Exceptions and Concurrency Exceptions 7 of 26

Section 2

Threads and Processes

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 8 of 26

Multi-tasking operating systems

Without an operating system, like on microcontrollers, the one and only program has
I exclusive access to the processor and
I exclusive access to the memory.

Simple view: A multi-tasking operating system can run multiple programs at a time.

To a computer scientist a multi-tasking OS provides the concept of concurrently executed processes.

A process is an illusion provided by a multi-tasking operating system:
I Like each process has its exclusive virtual processor.
I Like each process has its exclusive virtual memory.

Remark
Half of Computer Science is about abstractions and illusions!

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 8 of 26

Multi-tasking operating systems

Without an operating system, like on microcontrollers, the one and only program has
I exclusive access to the processor and
I exclusive access to the memory.

Simple view: A multi-tasking operating system can run multiple programs at a time.

To a computer scientist a multi-tasking OS provides the concept of concurrently executed processes.

A process is an illusion provided by a multi-tasking operating system:
I Like each process has its exclusive virtual processor.
I Like each process has its exclusive virtual memory.

Remark
Half of Computer Science is about abstractions and illusions!

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 8 of 26

Multi-tasking operating systems

Without an operating system, like on microcontrollers, the one and only program has
I exclusive access to the processor and
I exclusive access to the memory.

Simple view: A multi-tasking operating system can run multiple programs at a time.

To a computer scientist a multi-tasking OS provides the concept of concurrently executed processes.

A process is an illusion provided by a multi-tasking operating system:
I Like each process has its exclusive virtual processor.
I Like each process has its exclusive virtual memory.

Remark
Half of Computer Science is about abstractions and illusions!

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 8 of 26

Processes

The isolation of processes gives us this illusion, this abstraction.2

To provide the illusion of exclusive processor and memory an OS must:
I Isolate process memories by mapping the virtual memory pages to different physical page frames.
I Frequently schedule processes, i.e., assign a process to a processor for execution.
I Remember various states and resources per process in the process control block:

I Process ID
I Processor states: Instruction pointer, registers, virtual memory page mapping (page tables), …
I Privilege information: User ID, Group ID, …
I Resources: Open files, sockets, pipes, shared memory, …

2 A realtime operating system additionally provides temporal isolation between processes.

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 9 of 26

Processes in Java

Java feels a bit different here:
I Java prohibits direct memory access, so there is no need for memory isolation mechanisms as in C.
I Only with Java 5 a convenient way to fork processes was introduced via java.lang.ProcessBuilder.

Only with Java 9 the interface ProcessHandle was introduced to obtain, e.g., the PID of a process.

Many responsibilities of an OS moved into the JVM.

In Java concurrency is typically done by multi-threading rather than multi-processing.

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 10 of 26

Threads

A thread is a lightweight process:
I Threads are executed concurrently within one process.
I They share the same resources as a single process, e.g., the same process memory.

Threads (and processes) provide us with the means for concurrent programming.
I Concurrency does not imply parallelism!
I If your system possesses multiple processors or cores then threads may be executed in parallel.

Java supports multithreaded programming from the very first version.

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 11 of 26

Java threads

We require two ingredients to start a thread:
1 A class that implements the interface java.lang.Runnable, which possesses a method run(), which is

like the thread’s “main()”.
2 A java.lang.Thread instance that encapsulates the thread and its properties.

Notice
Java decouples the task to be run (Runnable) from the mechanism of running it (Thread).

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 12 of 26

Java threads
1 class ThreadMinimal {
2 public static void main(String args[]) {
3 // Create and start the worker thread
4 java.lang.Thread th = new java.lang.Thread(new ThreadMinimalWorker());
5 th.start();
6 }
7 }
8

9 class ThreadMinimalWorker implements java.lang.Runnable {
10 @Override
11 public void run() {
12 try {
13 while (true) {
14 System.out.println("99 bottles...");
15 java.lang.Thread.sleep(500);
16 }
17 }
18 catch (java.lang.InterruptedException e) {
19 }
20 }
21 }

Running multiple threads concurrently is more fun, see ParallelJobDemo.
Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 13 of 26

Interrupting threads
The example before did not terminate after main() returned.
I The thread started is a so-called non-daemon thread. All non-daemon threads need to terminate in

order for the process (JVM) to terminate.

We can kindly ask a thread to terminate by interrupting it.
I We call th.interrupt() for a Thread th.
I The interrupt status of th is set, which we can check by Thread.isInterrupted().
I There is also a static method Thread.interrupted() which returns whether the current thread has

been interrupted and clears the flag.
I However, if the thread is blocked (e.g, sleeping) we cannot check. This is when an

java.lang.InterruptedException is thrown, which we catch.

Notice
Interrupting a thread is like sending a signal to it.
I But there is no guarantee that the thread is indeed terminating itself; it is the thread’s choice.

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 14 of 26

ParallelJobInterruptDemo
Interrupting worker threads:

1 // Interrupt all the threads and let them stop
2 System.out.println("Interrupt the threads...");
3 for (Thread th : workerThreads)
4 th.interrupt();
5 System.out.println("Good bye.");

Handling the interrupt in each worker thread:
1

2 try {
3 // Keep going as long as we did not receive the interrupt. If we
4 // receive an interrupt , however, we most likely do so while
5 // sleeping , so the exception handling will be executed.
6 while (!Thread.currentThread().isInterrupted()) {
7 cnt++;
8 System.out.println(" Loop " + cnt + " th: " + threadid);
9 Thread.sleep(DELAY_MS);

10 }
11 }
12 catch (InterruptedException e) {
13 System.out.println(" Thread " + threadid + " int'ed.");

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 15 of 26

Joining threads

In a next step we see that “Good bye” is printed before the threads terminated.
I If we would need to do some clean up, we would need to wait for the termination of the threads.
I The method Thread.join() blocks until the thread has terminated.

1 // Wait for the threads to have terminated. Note that join() is a
2 // blocking operation , so it may throw InterruptedException itself.
3 try {
4 System.out.println("Join the threads...");
5 for (Thread th : workerThreads)
6 th.join();
7 }
8 catch (InterruptedException e) {
9 System.out.println("Main interrupted");

10 }

The program ParallelJobJoinDemo provides a complete program to showcase a pool of worker threads
with a clean tear down.

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 16 of 26

Race conditions

In practice, threads often access shared data or communicate with each other:
I Non-atomic, concurrent access to shared data easily corrupts the data.
I We have to be very, very careful that correctness does not depend on the lucky timing of thread

execution, which constitutes a race condition!

A typical race condition in transfer():3
1 /** The balances of the two accounts */
2 private int[] accounts = {0, 0};
3

4 /** Transfer given amount of money from one account to the other.
5 * The total balance stays invariant , i.e., sum of balances is constant. */
6 public void transfer(int from, int to, int amount) {
7 accounts[from] -= amount;
8 accounts[to] += amount;
9 }

3 The complete example is in BadBank.java

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 17 of 26

Race condition step by step

Note that for x += y the add and store machine instructions of the JVM are performed one at a time.
Consider the JVM essentially performing these machine instructions:

1 tmp = x + y
2 x = tmp

If the timing of thread execution is not lucky then two threads may show this execution order:
1 // accounts is {0, 0}
2 // thread 1 calls transfer(0, 1, 100);
3 tmp0 = accounts[0] - 100; // tmp0 is -100
4

5

6

7

8

9 accounts[0] = tmp0;
10 tmp1 = accounts[1] + 100; // tmp1 is -100
11 accounts[1] = tmp1;
12 // accounts = {-100, -100}

1 // accounts is {0, 0}
2 // thread 2 calls transfer(1, 0, 200);
3

4 tmp1 = accounts[1] - 200; // tmp1 is -200
5 accounts[1] = tmp1;
6 tmp0 = accounts[0] + 200; // tmp0 is 200
7 accounts[0] = tmp0;
8 // accounts = {200, -200}
9 //

10 //
11 //
12 //

Remember: Concurrent access to shared data requires synchronization mechanisms!
Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 18 of 26

Synchronization

We need to make the method transfer() mutual exclusive:
I No two threads can execute this method at the same time!
I In other words, we need synchronized access to transfer().

In Java, this can be conveniently done by adding the synchronized keyword to the method:4
1 /** Transfer given amount of money from one account to the other.
2 * The total balance stays invariant , i.e., sum of balances is constant. */
3 public synchronized void transfer(int from, int to, int amount) {
4 accounts[from] -= amount;
5 accounts[to] += amount;
6 }

4 The complete example is in GoodBank.java

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 19 of 26

Locks

Behind the scenes of synchronized we find the concept of locks.
I A lock can be acquired by only one thread at a time. If another did already then it is blocked until

the lock is released again, so another thread can attempt to acquire it.
I Java provides the class ReentrantLock, which implements the interface Lock, both in the package

java.util.concurrent.locks.

1 // Thread is blocked until it acquires the Lock l
2 l.lock();
3 try {
4 // The critical section
5 }
6 finally {
7 // Important: Even if exception has been raised, we have to release
8 // the lock again!
9 l.unlock();

10 }

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 20 of 26

Synchronized blocks
Synchronization leads to a serialization in execution:
I A synchronized method is like a tunnel where cars (threads) cannot pass in parallel, but one after

the other.
I This serialization hits performance, so we would like to make the synchronized parts as tight as

possible.

It would often be excessive to synchronize whole methods.
I Instead, we only would like to synchronize the critical sections.
I One way is to explicitly use Lock instances from before.
I Java provides synchronized blocks as a more convenient alternative.

1 // Only this small critical section needs to be synchronized. Any
2 // instance of Object can act as "lock" object here.
3 synchronized (accounts) {
4 accounts[from] -= amount;
5 accounts[to] += amount;
6 }

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 21 of 26

Synchronized blocks

A synchronized method locks the entire object this:
I It is like putting the entire method within a synchronized(this) block.

If you have multiple synchronized blocks that use different lock objects then those are not mutual
exclusive to each other!
I One thread can enter the one block while another thread may enter the other!
I If you mix synchronized methods and synchronized blocks this can easily happen!
I Keep your lock mechanisms clean and simple!

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 22 of 26

Conditions

Assume now for our bank example that we would not like to leave negative account balances, so we
wait until enough money is on the account.

1 synchronized (accounts) {
2 if (accounts[from] < amount)
3 // Wait until accounts[from] becomes >= acount. But no other thread can
4 // enter this critical section, so we wait forever. If we move this out
5 // of the critical section then we have the race condition all over again.
6 magicWait();
7

8 accounts[from] -= amount;
9 accounts[to] += amount;

10 }

This is where the concept of a Condition jumps in:
I A Lock.newCondition() creates a condition on the lock.
I A condition is like a signal for which threads can wait for.

In our case it could be the condition “account received money”. Name the condition accordingly!
When a thread sends money to an account then it has to notify the condition resp. all threads.

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 23 of 26

Responsible bank
See full code in ResponsibleBank.java

1 public void transfer(int from, int to, int amount) throws InterruptedException {
2 accountLock.lock();
3 try {
4 // Wait until enough money is in the orignal account.
5 while (accounts[from] < amount)
6 // This thread gives up the lock and continues only after
7 // having received the signal and re-aquired the lock again.
8 receivedCondition[from].await();
9

10 // Transfer the money.
11 accounts[from] -= amount;
12 accounts[to] += amount;
13

14 // Tell all threads waiting for money on the destination account.
15 receivedCondition[to].signalAll();
16 }
17 finally {
18 accountLock.unlock();
19 }
20 }

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 24 of 26

Deadlocks

Despite the notorious difficulty in getting it done right, there is a another main issue that needs to be
addressed in the course of concurrent programming: Deadlocks
I A deadlock is a circular dependency of threads in waiting for each other to give up locks, so no

thread can proceed anymore.
I Thread T1 waits for T2 and vice versa. Both are blocked, so neither can release its lock.
I Thread T1 waits for T2, waits for T3, …, waits for Tn, waits for T1.

Treating deadlocks is beyond the scope of this course.
I Advise 1: Write clean and simple locking mechanisms for which you can prove that no circular

locking dependencies (deadlocks) can occur!
I Advise 2: If possible, try to lock multiple ressources in the same order.

A livelock is similar to deadlocks, except that they are not blocked but instead busy only with locking
and unlocking without being able to progress.

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 25 of 26

Thread states
The lifecycle of a thread is captured by a state machine:
I When a Thread instance is created it is not running, but in state new. After starting it it becomes

runnable and can be scheduled for execution. After the run() method exits the thread has
terminated.

I When it is in a blocked or (timed) waiting state it is temporarily inactive.

new

runnable

terminated

waiting

blocked

timed waiting

start()

run() returned

lock acquired

join() or wait()
sleep() or timeout wait

Stefan Huber: 03: Exceptions and Concurrency Threads and Processes 26 of 26

04: Network Programming & Client-Server-Architecture
Network Oriented Software

Stefan Huber
www.sthu.org

Dept. for Information Technologies and Digitalisation
FH Salzburg

Summer 2023

Stefan Huber: 04: Network Programming & Client-Server-Architecture 1 of 20

www.sthu.org

Section 1

Java I/O

Stefan Huber: 04: Network Programming & Client-Server-Architecture Java I/O 2 of 20

Streams

The Java I/O classes are found in the package java.io1.
I The API provided by java.io is the classic API.
I A more modern API for I/O is provided by java.nio since Java 7.2

The stream classes are for sequential streams of binary data to files, consoles or other “devices”.
I InputStream is for reading and OutputStream is for writing.

Examples:
I FileInputStream and FileOutputStream are subclasses for file I/O.
I ObjectOutputStream and ObjectIntputStream can be used serialize and deserialize objects.

1 See https://docs.oracle.com/javase/tutorial/essential/io/index.html.
2 Actually, Java NIO for non-blocking I/O was introduced with Java 1.4 and added the selector, channel, et cetera classes. With Java 7, Java NIO.2 was introduced. It added the java.nio.file
package, with improvements on file handling. However, also AsynchronousSocketChannel was introduced by Java.NIO2, which facilitates the Future generic class for asynchronous computation.

Stefan Huber: 04: Network Programming & Client-Server-Architecture Java I/O 2 of 20

https://docs.oracle.com/javase/tutorial/essential/io/index.html

Readers and writers

Readers and Writers are built on top of streams to support character streams.
I It hides the details of dealing with encodings.
I It adds additional functionality, like buffering.

Examples:
I InputStreamReader reads from any InputStream, a FileReader reads from a file.
I BufferedReader adds buffers and wraps around other readers.
I Likewise there is BufferedWriter and FileWriter.
I PrintWriter supports all kind of print methods for formatted output.

Stefan Huber: 04: Network Programming & Client-Server-Architecture Java I/O 3 of 20

Try with resource

Many resources require to be closed explicitly. Exception handling needs some care:
1 BufferedReader br = new BufferedReader(new FileReader("/tmp/mfile.txt"));
2 try {
3 // Work with resource br
4 } finally {
5 if (br != null)
6 br.close();
7 }

For this use case Java knows a simpler try-with-resource statement:
1 try (InputStream is = new FileInputStream("/tmp/mfile.txt")) {
2 // Work with resource is
3 }

Cleanup is done after the try block:
I This works for all resources implementing the interface AutoCloseable, which defines a close().
I Like streams and readers.

Stefan Huber: 04: Network Programming & Client-Server-Architecture Java I/O 4 of 20

Section 2

Network Programming

Stefan Huber: 04: Network Programming & Client-Server-Architecture Network Programming 5 of 20

ISO/OSI Reference Model

I The OSI model is a reference model where each of the 7 layers has a dedicated task.
I Each layer provides functionality to the layer above it and uses the service provided by the one

below it.
I This is called Separation of Concerns. A concrete layer must be exchangeable for another

implementation as long as it provides the same functions (it has to fulfill a “contract”).

Layer Name Description
7 Application High-level APIs, remote file access, resource sharing
6 Presentation Data translation including encoding, compression, encryption
5 Session Communication sessions with back-and-forth transmission
4 Transport Sending data segments and datagrams
3 Network Routing packets, addressing, traffic control
2 Data link Data frames between nodes
1 Physical Bit stream over physical medium

Stefan Huber: 04: Network Programming & Client-Server-Architecture Network Programming 5 of 20

Sockets

Sockets in general are objects used to communicate with other programs.
I This can be on the same system (inter process communication, IPC) or via a network.
I A socket is a communication endpoint: the exchange happens between two sockets.
I They can be used bidirectionally, which means a socket can both send and receive data.

socketendpoint socket endpointread
write

write
read

To connect a TCP socket to another TCP socket, it must know:
I The IP address of the other end, e.g., 127.0.0.1 or ::1 for localhost.
I The port to which it should connect; they can range from 0 to 65535, but ports below 1024 are

well-known ports and privileged. Superuser rights are required to use them on UNIX systems.

Stefan Huber: 04: Network Programming & Client-Server-Architecture Network Programming 6 of 20

Server sockets

I A server socket is used to accept incoming TCP connections from clients.
I They are listening on a port for incoming communication requests.
I They do not need to specify an IP address, in which case they will listen on all network devices.

But a specific IP address can be given to choose a specific network interface.

socketendpoint server
socket

host:port

listeningconnect

socket endpoint

read
write

writeread

Server sockets are not created to send or receive data, but only to accept connections.

I Once a connection was accepted, a “regular” socket is created as communication endpoint. This
new socket does not use the server socket’s port but a different one; it is automatically assigned.

Stefan Huber: 04: Network Programming & Client-Server-Architecture Network Programming 7 of 20

Server sockets

I A server socket is used to accept incoming TCP connections from clients.
I They are listening on a port for incoming communication requests.
I They do not need to specify an IP address, in which case they will listen on all network devices.

But a specific IP address can be given to choose a specific network interface.

socketendpoint server
socket

host:port

listeningconnect

socket endpoint

read
write

writeread

Server sockets are not created to send or receive data, but only to accept connections.
I Once a connection was accepted, a “regular” socket is created as communication endpoint. This

new socket does not use the server socket’s port but a different one; it is automatically assigned.
Stefan Huber: 04: Network Programming & Client-Server-Architecture Network Programming 7 of 20

Socket communication sequence

The following table shows the typical sequence when making a connection and communicating with
sockets.

Client Server Comment
Opens a server socket setup of server
Starts listening for incoming connections

Creates a socket for each connection
Connects to the server

Accepts connection, gets a client socket
Sends/receives data Sends/receives data over client socket
Closes socket Closes client socket
...

... for each connection
Closes server socket tear-down of server

Stefan Huber: 04: Network Programming & Client-Server-Architecture Network Programming 8 of 20

Sockets in Java: The client

I The Socket class in Java can be found in the java.net package.
1 try {
2 // Create a new socket and connect to a server
3 // on the same system (localhost) on port 5000
4 Socket s = new Socket("localhost", 5000);

I Since a number of different things can go wrong with network-related methods, sockets can throw
an IOException. This exceptions must be handled when working with sockets.

1 } catch (IOException e) {
2 System.out.println("There was a problem with the connection");
3 }

I When the socket is not in use any more, it must be closed.
1 // Close the Socket
2 s.close();

Hence, it is highly recommended that you use a try-with-resource statement, see
BetterSocketClient.java.

Stefan Huber: 04: Network Programming & Client-Server-Architecture Network Programming 9 of 20

Sockets in Java: Sending and receiving
An open socket can then send and receive data through streams.

socket

client endpoint

socket

server endpoint

InputStream

OutputStream

OutputStream

InputStream

I The getOutputStream() method returns its output stream.
1 // A PrinterWriter that wraps around the sockets output stream.
2 PrintWriter out = new PrintWriter(s.getOutputStream(), true);
3 // Send a message to the server.
4 out.println("Hello Server!");

I The getInputStream() method returns its input stream.
1 // A BufferedReader that wraps around the socket's input stream.
2 BufferedReader in = new BufferedReader(
3 new InputStreamReader(s.getInputStream()));
4 // Read a line from the InputStream
5 String str = in.readLine();

Stefan Huber: 04: Network Programming & Client-Server-Architecture Network Programming 10 of 20

Sockets in Java: The server

The ServerSocket class is in the java.net package.
I Its constructor takes the port number on which it should listen.
I With the accept() method it waits for incoming connections. It returns a Socket object of the new

connection to the client.
I Via this socket it communicates to the client.

1 // Open server socket that listens on port 5000
2 ServerSocket serv = new ServerSocket(5000);
3

4 // Listens until it receives an incoming connection
5 // returns an socket that handles the actual communication
6 Socket s = serv.accept();

I Call close() for each socket when they are not used anymore. Use the try-with-resource statement.
I The socket for the client connection, when done.
I The server socket, when done.

Stefan Huber: 04: Network Programming & Client-Server-Architecture Network Programming 11 of 20

Section 3

Client-server architectures

Stefan Huber: 04: Network Programming & Client-Server-Architecture Client-server architectures 12 of 20

Concurrency models

Usually a server has to handle more than one client connection. The two main models to achieve
server-side concurrency are:
I Fork on request
I Event driven

socketendpoint
client

socketendpoint
client

socket endpoint
server

socket endpoint
server

server
socket

host:port

listening

read
write

write
read

read
write

write
read

Stefan Huber: 04: Network Programming & Client-Server-Architecture Client-server architectures 12 of 20

Fork on request

Fork-on-request3 is done in two steps:
I A main process/thread that listens for incoming connections, accepts them and starts (forks) a new

worker process/thread for each one.
I The worker process/thread does the actual communication.

socketendpoint
client

socketendpoint
client

socket endpoint
server

socket endpoint
server

worker
thread

read
write

write
read

worker
thread

read
write

write
read

Use netcat to test your client or server.

3 The term “fork” refers to the POSIX function fork() to spawn a new process.

Stefan Huber: 04: Network Programming & Client-Server-Architecture Client-server architectures 13 of 20

Fork on request: Server

The following example shows the handling of new connections on a server that uses the fork-on-request
concurrency model.

1 // Open a socket on port 5000. We use try-with-resource such that
2 // socket is closed automatically.
3 try (ServerSocket serv = new ServerSocket(5000)) {
4 // TODO: Add logic for graceful tear down, including threads.
5 while(true) {
6 // Listen an accept new connections
7 Socket incoming = serv.accept();
8 // Start a new thread that handles the connection
9 Thread t = new Thread(new EchoServerWorker(incoming));

10 t.start();
11 System.out.println("New thread " + t.getId());
12 }
13 } catch (IOException e) {
14 System.out.println("There was an error");
15 }

Stefan Huber: 04: Network Programming & Client-Server-Architecture Client-server architectures 14 of 20

Fork on request: Worker

The following example shows how each thread can handle its connection and communication with the
client it is serving.

1 while(true) {
2 // Read message from client
3 String str = in.readLine();
4 if(str == null)
5 break;
6

7 // Send back "Echo:" + original message
8 out.println("Echo: " + str);
9 out.flush();

10 System.out.println("Recv: " + str);
11

12 if(str.trim().equals("BYE"))
13 break;
14 }

See ForkOnRequestEchoServer.java and EchoServerWorker.java for all the details.

Stefan Huber: 04: Network Programming & Client-Server-Architecture Client-server architectures 15 of 20

Preforking

Forking a process is a costly task:
I For instance, a new process memory has to be set up, but also all other management structures in

the process control block.
I Starting a thread is much cheaper.

Preforking can cut the setup costs:
I A fixed pool of worker threads (or processes) is pre-initialized and waiting for work.
I Preforking with blocking I/O does not provide full concurrency. The number of concurrently

serviced clients is restricted by the size of the pool.
This can be suitable for certain applications, where a great number of connections cannot be
handled anyway (e.g., a file server is often I/O-bound by disk).

Stefan Huber: 04: Network Programming & Client-Server-Architecture Client-server architectures 16 of 20

Event-driven architecture

But also context switches between processes came at costs:
I When switching the virtual memory mapping a TLB flush has to be paid.
I Threads are cheaper, but there are still costs, like cache invalidation and the scheduling costs.

What if we want to handle many ten thousands or a million connections per second?
I We cannot afford the thread handling anymore!
I Can we be concurrent without threads or processes?
I Not with blocking I/O!

Conclusion
Massively parallel network communication cannot be built on top of blocking I/O.

Stefan Huber: 04: Network Programming & Client-Server-Architecture Client-server architectures 17 of 20

Event-driven architecture

Corner points of an event-driven architecture:
I Non-blocking, asynchronous I/O calls are used.
I A single thread is used (or can be used). That is, concurrency is not founded on top of threads.

Non-blocking I/O
I We send I/O requests to the system and get notified when they are done. No waiting, no blocking.

Hence, it is also known as asynchronous I/O.
I There is a single event loop that reacts on these notifications (events).

The concurrency logic moves from the OS and system libraries to the application, which results in more
complex code, but at the benefit of performance.
Preforking is not required on an event-driven architecture. But it can be used to increase CPU
utilization on a multi-core system.

Stefan Huber: 04: Network Programming & Client-Server-Architecture Client-server architectures 18 of 20

Non-blocking I/O in Java

The classic I/O API is stream-oriented and provides blocking I/O.

The modern I/O API in java.nio also provides non-blocking I/O:
I It is buffer-oriented. Buffers allow us to hand over or take over the data.
I Instead of streams, we have channels from which data is read and written to, through buffers.

I A SocketChannel is a channel for a client sockets, a ServerSocketChannel for a server socket.
I Selectors are used to select those channels for which “I/O events” have arrived. For instance:

I A client connection can be accepted.
I Data can be read.
I Data can be written.

I Only a so-called SelectableChannel can be registered at a Selector.
I A SelectableChannel can be configured as non-blocking.
I The socket channels inherit from SelectableChannel.

Stefan Huber: 04: Network Programming & Client-Server-Architecture Client-server architectures 19 of 20

Channels and selectors (server)

ServerSocketChannel
host:port

SocketChannel

SocketChannel

socket
client

socket
client

read
write

write
read

read
write

write
read

Selector
of events

register
register

reg
iste

r

SelectionKey
selected channel

type of event (accept, read, write)

event loop:
key selection
& iteration

A code example is provided as EventDrivenServer and EventDrivenClient.

Stefan Huber: 04: Network Programming & Client-Server-Architecture Client-server architectures 20 of 20

05: Middleware
Network Oriented Software

Stefan Huber
www.sthu.org

Dept. for Information Technologies and Digitalisation
FH Salzburg

Summer 2023

Stefan Huber: 05: Middleware 1 of 23

www.sthu.org

Section 1

Autoboxing and reflection

Stefan Huber: 05: Middleware Autoboxing and reflection 2 of 23

Autoboxing and unboxing

We are sometimes forced to treat primitive-type variables as objects.
1 int foo = 42;
2 // static int hashCode(Object o)
3 int foo_hash = java.util.Objects.hashCode(foo);

Java knows to every primitive type a corresponding class type:

byte java.lang.Byte
short java.lang.Short
int java.lang.Integer
long java.lang.Long

float java.lang.Float
double java.lang.Double
boolean java.lang.Boolean
char java.lang.Character

The hashCode() example works because Java is automatically converting int to java.lang.Integer in
order to pass an Object to hashCode().
I Autoboxing: Automatic conversion to class type.
I Unboxing: Automatic conversion back to primitive type.

Stefan Huber: 05: Middleware Autoboxing and reflection 2 of 23

Generics
Generics are in Java what templates are in C++, but less powerful.1

I Generics reduce type erasure and the need of casting from Object, but instead preserve types.
I Generics allow for generic programming.2

Without generics:
1 List list = new ArrayList(); // ArrayList implements the interface List
2 list.add(42); // Autoboxing to java.lang.Integer
3 list.add("Hello"); // Takes any Object
4 Integer head = (Integer) list.get(0); // get() returns an Object: requires a
5 // cast, which is error prone.

With Java 5 generics were added: We can pass the container element type as a type parameter:
1 List<Integer > list = new ArrayList <Integer >();
2 list.add(42); // Autoboxing to java.lang.Integer
3 list.add("Hello"); // Compiler error: Not an Integer
4 int head = list.get(0); // Unboxing from java.lang.Integer
5 // get() returns an Integer.

1 They are computationally equally powerful as they are both Turing complete, cf. [Gri16]. In C++ this gives rise to meta programming. But C++ templates and Java generics differ in the sense
that Java generics are rather syntactic sugar to hide casts. It is actually possibly to work around this and insert a String into a list<Integer> using some casts.
2 There is a collections framework in Java with many different container types:
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/util/doc-files/coll-overview.html

Stefan Huber: 05: Middleware Autoboxing and reflection 3 of 23

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/util/doc-files/coll-overview.html

Reflection

Reflection is in Java what RTTI is in C++, but more powerful.
I It allows to introspect objects and its features (fields, methods) at runtime, which will be useful for

marshalling and RMI, see later.

The class java.lang.Class allows us to interrogate the type:3
1 Class cl = Dummy.class;
2 System.out.println("Dummy is a type called " + cl.getName());
3 System.out.println("And int is " + int.class.getName());
4

5 Dummy dummy = new Dummy();
6 System.out.println("dummy is object of type " + dummy.getClass().getName());
7 System.out.println("dummy is a Dummy? " + (dummy.getClass() == Dummy.class));
8 System.out.println("dummy is also an Object? " + (dummy instanceof Object));

3 See more at https://www.oracle.com/technical-resources/articles/java/javareflection.html

Stefan Huber: 05: Middleware Autoboxing and reflection 4 of 23

https://www.oracle.com/technical-resources/articles/java/javareflection.html

Reflection

However, the reflection mechanism can even instantiate objects and call methods by name.
I We start by obtaining a Class instance by name using Class.forName().
I This could be used to implement a plugin mechanism, for instance.
I Reflection is the technical foundation for distributed object architectures, see later.

1 public static void introspect(String clname) {
2 try {
3 System.out.println("Introspecting class " + clname);
4 Class cl = Class.forName(clname);

1 // Get the no-argument constructor , instantiate an object , get the
2 // toString() method and invoke it on the instance.
3 Constructor noArgCtor = cl.getDeclaredConstructor();
4 Object obj = noArgCtor.newInstance();
5 Method toStringMethod = cl.getMethod("toString");
6 String res = (String) toStringMethod.invoke(obj);
7 System.out.println("(new " + clname + "()).toString() -> " + res);

Stefan Huber: 05: Middleware Autoboxing and reflection 5 of 23

Section 2

Distributed systems and middleware

Stefan Huber: 05: Middleware Distributed systems and middleware 6 of 23

Distributed systems

A computing system that is distributed on a computer network.
I Collection of autonomous components (nodes).
I Nodes cooperate to form a single coherent system.
I Nodes are distributed on and communicate via a computer network.

Characterization 1 (van Steen)
A distributed system is a collection of autonomous computing elements that appears to its users as a
single coherent system.

Literature: Maarten van Steen and Andrew S. Tanenbaum. Distributed Systems. 4th ed. Jan. 2023.
isbn: 978-9081540636

Stefan Huber: 05: Middleware Distributed systems and middleware 6 of 23

Examples for distributed systems

WWW Master-slave. The World Wide Web is the probably the largest distributed system. Web
browsers and web servers as nodes that communicate via HTTP protocol over the
Internet. For the user the WWW appears as a single system.

Bittorrent A peer-to-peer file sharing protocol using so-called distributed hash tables to find peers.

GIMPS Great Internet Mersenne Prime Search is an example for distributed computing.
NFS The Network File System is a distributed file system based on Remote Procedure Calls.

Bitcoin A cryptocurrency implementing a distributed ledger. Bitcoin is using an underlying
blockchain and a distributed consensus algorithm (Proof of Work) to ensure integrity.

Car A car comprises a distributed system of several dozens ECUs, controlling the engine,
brakes, doors, or HMI. A typical automotive network is CAN bus.

Automation An industrial machine comprises controllers, drives, sensors, HMI with realtime
communication over a classical fieldbus or, more modern, using distributed object
systems, like OPC UA, over time-triggered Ethernet-based networks, like TSN.

Stefan Huber: 05: Middleware Distributed systems and middleware 7 of 23

Examples for distributed systems

WWW Master-slave. The World Wide Web is the probably the largest distributed system. Web
browsers and web servers as nodes that communicate via HTTP protocol over the
Internet. For the user the WWW appears as a single system.

Bittorrent A peer-to-peer file sharing protocol using so-called distributed hash tables to find peers.
GIMPS Great Internet Mersenne Prime Search is an example for distributed computing.

NFS The Network File System is a distributed file system based on Remote Procedure Calls.
Bitcoin A cryptocurrency implementing a distributed ledger. Bitcoin is using an underlying

blockchain and a distributed consensus algorithm (Proof of Work) to ensure integrity.

Car A car comprises a distributed system of several dozens ECUs, controlling the engine,
brakes, doors, or HMI. A typical automotive network is CAN bus.

Automation An industrial machine comprises controllers, drives, sensors, HMI with realtime
communication over a classical fieldbus or, more modern, using distributed object
systems, like OPC UA, over time-triggered Ethernet-based networks, like TSN.

Stefan Huber: 05: Middleware Distributed systems and middleware 7 of 23

Examples for distributed systems

WWW Master-slave. The World Wide Web is the probably the largest distributed system. Web
browsers and web servers as nodes that communicate via HTTP protocol over the
Internet. For the user the WWW appears as a single system.

Bittorrent A peer-to-peer file sharing protocol using so-called distributed hash tables to find peers.
GIMPS Great Internet Mersenne Prime Search is an example for distributed computing.

NFS The Network File System is a distributed file system based on Remote Procedure Calls.
Bitcoin A cryptocurrency implementing a distributed ledger. Bitcoin is using an underlying

blockchain and a distributed consensus algorithm (Proof of Work) to ensure integrity.
Car A car comprises a distributed system of several dozens ECUs, controlling the engine,

brakes, doors, or HMI. A typical automotive network is CAN bus.
Automation An industrial machine comprises controllers, drives, sensors, HMI with realtime

communication over a classical fieldbus or, more modern, using distributed object
systems, like OPC UA, over time-triggered Ethernet-based networks, like TSN.

Stefan Huber: 05: Middleware Distributed systems and middleware 7 of 23

Characteristics: Collection of autonomous nodes

I Nodes are in principle independent from each other, but cooperate.
I Nodes run concurrently.
I The collection may be very heterogeneous.
I Each node has its own notion of time. There may not be a global clock.
I Cooperation requires communication, e.g., message passing.

Stefan Huber: 05: Middleware Distributed systems and middleware 8 of 23

Characteristics: Single coherent system

I Wiktionary on coherent: Unified; sticking together; making up a whole.
I Level of coherence versus the level of distribution.
I Distribution transparency:

I User does not need to know where something is processed, stored, et cetera.
I Half of system engineering is abstraction! Abstraction means hiding details.

Characterization 2 (Lamport)
[A distributed system is] one in which the failure of a computer you didn’t even know to exist can render
your computer unusable.

Stefan Huber: 05: Middleware Distributed systems and middleware 9 of 23

Middleware

Distribution transparency
Distribution transparency allows for ignorance of the location of data or services.

Middleware
Middleware is a cross-node layer on top of each OS to provide distribution transparency to distributed
applications.

I It makes a distributed system appear as a single computer.
I Provides abstractions from the details of communication (on a data level).

Middleware

OS

Appl Application

OS

A

OS OS

A

Node Node Node Node

OS

Client

OS

Node Node

Server

Stefan Huber: 05: Middleware Distributed systems and middleware 10 of 23

Middleware services

Middleware

OS

Appl Application

OS

A

OS OS

A

Node Node Node Node

OS

Client

OS

Node Node

Server

Middleware : distributed system =̂ operating system : computer.
I Manages resources
I Provides services

Naming, inter-application communication, failure tolerance, security …

Stefan Huber: 05: Middleware Distributed systems and middleware 11 of 23

Types of transparencies

Distribution transparency may refer to different transparency types:4

Transparency Description
Access Hide differences in data representation and method of access
Location Hide where object is located
Relocation Hide that an object may be moved while used
Migration Hide that an object is moving/mobile object
Replication Hide that an object is replicated
Concurrency Hide that an object is shared by independent users
Failure Hide failure and recovery of an object

I Location: We are ignorant of the server that ships the page www.google.com.
I Relocation: We even do not notice if the server just changed.
I Migration: Relocation means moving objects by the system, but migration is an offer to the user,

e.g., a mobile phone can move between base stations, even during a call.
4 An object here may mean process or resource.

Stefan Huber: 05: Middleware Distributed systems and middleware 12 of 23

www.google.com

Section 3

Remote Procedure Call

Stefan Huber: 05: Middleware Remote Procedure Call 13 of 23

Remote Procedure Call
Within an application, how do components communicate?
I Procedure calls.5

Within a distributed system, how do components communicate (so far)?
I Message exchange.
I Even for Inter-Process Communication on the same host we have a message-based communication.

Caller

Callee

Remote call Return from call

Wait for return

Remote exec.

A
rgs R

es
ul
t

Simple yet powerful idea: Procedure calls within distributed applications.
I We can call a remote procedure as if it is local. No change of paradigm.
I Increased access transparency.

5 Assuming an imperative programming paradigm.

Stefan Huber: 05: Middleware Remote Procedure Call 13 of 23

Remote Procedure Call
Within an application, how do components communicate?
I Procedure calls.5

Within a distributed system, how do components communicate (so far)?
I Message exchange.
I Even for Inter-Process Communication on the same host we have a message-based communication.

Caller

Callee

Remote call Return from call

Wait for return

Remote exec.

A
rgs R

es
ul
t

Simple yet powerful idea: Procedure calls within distributed applications.
I We can call a remote procedure as if it is local. No change of paradigm.
I Increased access transparency.

5 Assuming an imperative programming paradigm.

Stefan Huber: 05: Middleware Remote Procedure Call 13 of 23

Marshalling

Openess
A distributed system shall be open; it shall be easy to use and integrate its components in other systems.

An open RPC mechanism has to deal with heterogeneous systems:
I Programming languages
I Operating system
I Processor instruction sets (x86, amd64, arm, powerpc, alpha, …), register sizes, address bus sizes,

byte order (little endian versus big endian), floating-point units, et cetera.

Marshalling
Marshalling and unmarshalling is the transformation of parameters and return values into a neutral data
format forth and back.

The goal of marshalling is openess and access transparency.
Stefan Huber: 05: Middleware Remote Procedure Call 14 of 23

XML-RPC

I A RPC protocol based on XML over HTTP.
I Developed by UserLand Software and Microsoft (1998).
I Later evolved to the SOAP protocol, used by W3C web services. A similar protocol is JSON-RPC.

1 <!-- A XML-RPC request -->
2 <?xml version="1.0"?>
3 <methodCall >
4 <methodName >strlen </methodName >
5 <params>
6 <param> <value><string>hello </string ></value> </param>
7 </params>
8 </methodCall >

1 <!-- A XML-RPC response -->
2 <?xml version="1.0"?>
3 <methodResponse >
4 <params>
5 <param> <value><int>5</int></value> </param>
6 </params>
7 </methodResponse >

Stefan Huber: 05: Middleware Remote Procedure Call 15 of 23

XML-RPC demo: Pascal’s triangle
Output a Pascal’s triangle, but computation of binomial coefficients is outsourced to an XML-RPC
service.

Proxy

Calculator

Skeleton

CalculatorImpl

binomial()

Calculator

ServerClient

Pascal triangle

I Server: Define the interface Calculator, implement it on the server side, e.g., in CalculatorImpl, and
launch an XML-RPC server that provides this as an XML-RPC service.

I Client: Tell the XML-RPC client library to connect to the server and provide a proxy object for the
interface Calculator. The rest is behind the scenes.

Stefan Huber: 05: Middleware Remote Procedure Call 16 of 23

Variations of RPC

Asynchronous call:
I If the remote procedure has no result or we do not care.
I Server immediately sends acknowledgment rather than after execution.
I One-way RPC: Do not even wait for ack at expense of reliability.

Caller

Callee

Return from call

Remote execution

A
rgs A

ck

Wait
for ack

Stefan Huber: 05: Middleware Remote Procedure Call 17 of 23

Variations of RPC

Deferred synchronous RPC:
I Immediate ack, but returned values are sent later.
I Often returned values are signaled via a callback function. Alternative: Polling.
I For instance for parallel communication with server(s).

Caller

Callee
Remote execution

A
rgs A

ck

Wait
for ack

R
et
ur
n

Callback

Stefan Huber: 05: Middleware Remote Procedure Call 18 of 23

Variations of RPC

Multicast RPC:
I Sending RPC request to a group of servers.
I Return is signaled by callback by each server.
I Waiting for first callback versus waiting for all.

I Multicast for fault tolerance: Wait for first callback.
I Multicast for parallelization: Wait for all (and merge results?).

Caller

Callee
Remote execution

Callbacks

Callee
Remote execution

Stefan Huber: 05: Middleware Remote Procedure Call 19 of 23

Section 4

Object-based architectures

Stefan Huber: 05: Middleware Object-based architectures 20 of 23

Object-based architecture

Object-based architecture
An object-based architecture consists of a distributed set of objects that interact via method calls.

Object Object

Object
Object

Object Method call

Encapsulation like in OOP:
I Objects encapsulate data, the object’s state.
I Objects provide methods that operate on the state.

Method calls can take place over the network.
I But thanks to distribution transparency provided by a middleware, we (mostly) do not care.
I We speak of distributed objects.

Stefan Huber: 05: Middleware Object-based architectures 20 of 23

Distributed objects
An interface defines the set of methods to access an object.
I The interface hides the actual implementation.

Object B

State

Method

Interface B

Proxy

Interface B

Object AObject A

Object B Skeleton

How it seems How it is done

Interface B

Assume Object A calls a method of an Object B on a different node.
I For Object A all that matters is the interface of B.
I A proxy of Object B, which implements the same interface, is loaded at the location of Object A.

The proxy then performs a remote procedure call.
I Proxy and skeleton provide the illusion of co-located objects.

Stefan Huber: 05: Middleware Object-based architectures 21 of 23

RMI

RMI (Remote Method Invocation) is the foundation for distributed object architectures in Java.
I Remote objects are registered and looked up at the rmiregistry; it is a naming service.
I An interface extends java.rmi.Remote.

The calculator demo:

rmiregistry

RMI object

bind(”myCalculator”)

stub

Calculator
lookup(”myCalculator”)

Client Server

remote call

Stefan Huber: 05: Middleware Object-based architectures 22 of 23

Other distributed object technologies

RMI in particular is a Java technology. But there are many others that are language-agnostic, including:
CORBA The Common Object Request Broker Architecture originated in 1991 is a widely known,

complex distributed object architecture.
Ice The Internet Communication Engine is influenced by CORBA, but smaller and less

complex. It originates in 2004 but its source code is available in GitHub since 2015.
COM The Component Object Model was introduced by Microsoft in 1993 and is the basis for

OLE, ActiveX, COM+ and so on. DCOM is basically COM over network.

They have in common to define an IDL (Interface definition language):
I In this language the interface is defined.
I An IDL compiler then generates skeleton and stub code for the target programming languages, like

C++, Python, Java, et cetera.

Such architectures typically have a couple of management services:
I Naming and object directory services
I Load balancing and fail over mechanisms

Stefan Huber: 05: Middleware Object-based architectures 23 of 23

References I

[Gri16] Radu Grigore. Java Generics are Turing Complete. 2016. arXiv: 1605.05274 [cs.PL].

[vT23] Maarten van Steen and Andrew S. Tanenbaum. Distributed Systems. 4th ed. Jan. 2023. isbn:
978-9081540636.

https://arxiv.org/abs/1605.05274

06: SOA, Web Services & REST
Network Oriented Software

Stefan Huber
www.sthu.org

Dept. for Information Technologies and Digitalisation
FH Salzburg

Summer 2023

Stefan Huber: 06: SOA, Web Services & REST 1 of 24

www.sthu.org

Service-Oriented Architecture

Service-Oriented Architecture (SOA) separates an application into individual services.

A service:
I It is a self-contained entity; it can live and run by itself.
I A service can make use of other service.

I It is still self-contained; the other service may actually be run by a different organization.

I It is a black box to the consumer: strong encapsulation, high cohesion and loose coupling is
emphasized. Interface definitions of services are a central aspect.

Stefan Huber: 06: SOA, Web Services & REST 2 of 24

Service-Oriented Architecture

Service-Oriented Architecture (SOA) separates an application into individual services.

A service:
I It is a self-contained entity; it can live and run by itself.
I A service can make use of other service.

I It is still self-contained; the other service may actually be run by a different organization.

bad: low cohesion, many
depenencies, high coupling

good: high cohesion, strong interfaces,
clear dependencies, loose coupling

I It is a black box to the consumer: strong encapsulation, high cohesion and loose coupling is
emphasized. Interface definitions of services are a central aspect.

Stefan Huber: 06: SOA, Web Services & REST 2 of 24

Examples

Example: Web shop selling goods
I Application logic: Selecting ordered item, registering, checking delivery channels (e.g., e-mail),

checking payment.
I Payment could be a separate service, maybe run by a different organization.
I Delivery channel handling could be a separate service.

Example: Traveling website
I Multiple services of different airlines, hotels, car rental companies.
I An Expedia-like service uses the above services to provide a service to the user that does the

aggregation, comparison, composition of a travel.

Stefan Huber: 06: SOA, Web Services & REST 3 of 24

Misconceptions and fuzz

SOA has become a well-known and somewhat divisive acronym. If one asks two people to define
SOA one is likely to receive two very different, possibly conflicting, answers.

– msdn.microsoft.com

[SOA is defined as] a loosely-coupled architecture designed to meet the business needs of the
organization. – msdn.microsoft.com

Wrong myths about SOA:1

I SOA would require web services.
I SOA would be new and revolutionary.

1 https://web.archive.org/web/20160206132542/https://msdn.microsoft.com/en-us/library/bb833022.aspx#_Introduction_to_SOA

Stefan Huber: 06: SOA, Web Services & REST 4 of 24

https://web.archive.org/web/20160206132542/https://msdn.microsoft.com/en-us/library/bb833022.aspx#_Introduction_to_SOA

Sharpening terms

Component:
I Unit of software that is independently replaceable and upgradable.

Library versus Services:
I Library is component that are linked into a program and called using in-memory function calls.
I Services are out-of-process components with communication like RPC or web service request.

I Hence, they are independently deployable.
I Also, we need more explicit component interfaces and breaking encapsulation is harder (and does not

rely on discipline).

Stefan Huber: 06: SOA, Web Services & REST 5 of 24

The Open Group SOA Working Group
The Open Group SOA Working Group provides the following definitions.2

Definition 1
I Service-Oriented Architecture (SOA) is an architectural style that supports service-orientation.
I Service-orientation is a way of thinking in terms of services and service-based development and the

outcomes of services.

Definition 2
A service
I is a logical representation of a repeatable business activity that has a specified outcome (e.g.,

check customer credit, provide weather data, consolidate drilling reports),
I is self-contained,
I may be composed of other services, and
I is a black box to consumers of the service.

2 https://web.archive.org/web/20160819141303/http://opengroup.org/soa/source-book/soa/soa.htm

Stefan Huber: 06: SOA, Web Services & REST 6 of 24

https://web.archive.org/web/20160819141303/http://opengroup.org/soa/source-book/soa/soa.htm

Advantages of SOA

SOA fosters and uses
I high cohesion, loose coupling
I open standards (e.g., XML)
I network distribution

This results in these advantages:
I Platform independence (openess)
I Simpler integration:

I It reduces essentially a service specification.
I Complexities are isolated and hidden behind the service specification, which makes integration easier.

I Parallel development of applications.
I Implementation details of a service do not impact other applications or services.

Stefan Huber: 06: SOA, Web Services & REST 7 of 24

W3C Web Services

The W3C defines a web service as follows:3

Definition 3
A Web service is a software system designed to support interoperable machine-to-machine interaction
over a network.
I It has an interface description in a machine-processable format (specifically WSDL).
I Other systems interact with the Web service [...] using SOAP-messages [...].

Service
requester

Service
providerSOAP

Service
broker

UDDI

WSDL WSDL

UDDI (Universal Description, Discovery and Integration):
I A world-wide web service registry in the internet.
I In contrast, WS-Discovery is a multicast discovery

protocol for a local network.

3 https://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice

Stefan Huber: 06: SOA, Web Services & REST 8 of 24

https://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice

Web Service operations

There are three kinds of interactions in a Web Service architecture:
I Publish:

The provider publishes a service description via the service registry.
I Find:

The requester retrieves a service description from the registry with its binding and location
description.

I Bind:
The requester initiates interaction with the service at runtime.

Service
requester

Service
providerSOAP

Service
broker

UDDI

WSDL WSDL

Stefan Huber: 06: SOA, Web Services & REST 9 of 24

SOA versus microservices

I SOA services are relatively broad and on enterprise-level, like an entire payment processing service.
I Microservices are similar, but rather on application-level.

I Lightweight communication, like resource-oriented HTTP API. “Smart endpoints and dumb pipes”
like in the UNIX philosophy.

I Naturally goes with DevOps and continuous development.

Stefan Huber: 06: SOA, Web Services & REST 10 of 24

Resource-based Architectures

Issues with services in SOA:
I Service composition easily turned into a integration nightmare.
I E.g., SOAP client and server are still quite tightly coupled by a contract (WSDL).

REST provides a different approach:
I Model: A distributed system interpreted as a collection of resources.
I Resources can be created, read, updated, deleted (CRUD).
I “Browsing” resources rather than invoking RPCs.
I Stateless communication, self-contained messages, uniform interface.
I A client can start using a REST API with zero knowledge about the API, in contrast to SOAP.

I There is an entry point and messages contain information (URIs) how to keep going.

REST is an architectural style, not a protocol.4

4 It may not make sense, but one could theoretically implement a REST architecture over SOAP.

Stefan Huber: 06: SOA, Web Services & REST 11 of 24

RESTful architecture
REST means REpresentational State Transfer
I Resources have states. A state has a representation (e.g., XML or JSON).
I REST is about the transfer of representations of states (of resources).

Basic principles:
I Client-server communication
I Stateless

The messages sent to and from the service are fully self-described. There is no session state; the
server forgets about the client after command execution.

I Cacheable
There might be a layer between client and server that caches responses. Retrieving a state twice
gives the same result (idempotence).

I Uniform interface
There is a single uniform interface to all components. There is a single naming scheme (URIs) for
resources. HATEOAS5: Only the initial URI but no further knowledge is necessary for access;
further information is dynamically given through hypermedia.

5 Hypermedia As The Engine Of Application State. http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Stefan Huber: 06: SOA, Web Services & REST 12 of 24

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

REST via HTTP in vivo

The REST operation are mapped to HTTP operations.
I Hence, we can use curl to actually demonstrate REST on the command line.
I The media type is often JSON or XML.
I The response contains URIs that tell us how to proceed.

1 curl "https://api.github.com"
2 {
3 "current_user_url": "https://api.github.com/user",
4 [...]
5

6 curl "https://api.github.com/users/torvalds"
7 {
8 "login": "torvalds",
9 "id": 1024025,

10 [...]

Stefan Huber: 06: SOA, Web Services & REST 13 of 24

Mapping to HTTP methods

CRUD HTTP Method Usage
Create POST Create a subordinate resource in a collection
Read GET Retrieve data from the server
Update PUT Replace an existing resource (or, more rarely, place a new one)
Delete DELETE Remove a resource on the server

Note that the operations GET, PUT, DELETE are idempotent by RFC 7231.6

I The intended effect of multiple identical requests with that method is the same as the effect for a
single such request. It is not about status code.

I Idempotent operations can be simply repeated after communication failure.
I RFC 7231 does not really define GET as being idempotent, but rather “safe”, meaning read-only.

Hence, safe methods are trivially idempotent, too.
I POST is not idempotent!

6 https://tools.ietf.org/html/rfc7231

Stefan Huber: 06: SOA, Web Services & REST 14 of 24

https://tools.ietf.org/html/rfc7231

Parameters and example requests

Parameters are passed in either of two ways:
I Path parameter: http://api.example.com/customer/9876
I Query parameter: http://api.example.com/customer?id=4563 (or as part of the HTTP

header, if it’s a POST request)

Requests with different types to the same path can call different methods:
I A POST request to http://api.example.com/customers would create a new customer in the

collection resource customer, e.g., http://api.example.com/customer/5123.
I A GET request to the same URI and path could retrieve data about the customers collection.
I A GET request to http://api.example.com/customer/5123 will retrieve data about the

specific customer.
I A PUT to that URI would replace (or create) the customer 5123.
I A DELETE to that URI would remove that customer.

Stefan Huber: 06: SOA, Web Services & REST 15 of 24

http://api.example.com/customer/9876
http://api.example.com/customer?id=4563
http://api.example.com/customers
http://api.example.com/customer/5123
http://api.example.com/customer/5123

Spring Boot

Spring Boot is a Java framework to create web services.
I Part of the larger Spring application framework.
I Embedding into application servers like Apache Tomcat:

I Tomcat is a Java web server that runs Java code on the server side. That is, Tomcat is a Java servlet
engine, i.e., it runs server-side applications using the Java servlet API.

I Those web applications can be packages as WAR files, however, we do not need to with Spring Boot.
I Convention over configuration to enable rapid application development.

I Start configuration (POM files) for the Maven build system
I Automatic configuration of Spring
I No code generation and no required XML configuration

I Very popular in the Java ecosystem:
I Wide range of tools.
I Integration provided by many IDEs.

Stefan Huber: 06: SOA, Web Services & REST 16 of 24

SpringBootApplication

The following code snippets, which are taken out of the provided RestfulWebServer and
WebServiceClient code examples, use the Spring Boot framework.

The @SpringBootApplication annotation is used to mark a class with a main() method as the application.
I It is a shorthand7 for other annotations that enable auto configuration of the framework and a

component scan.
I SpringApplication.run() starts the web application.
I The framework takes care of the rest, such as starting the application server and offering the

services.
1 @SpringBootApplication
2 public class RestfulWebServiceApplication {
3 public static void main(String[] args) {
4 SpringApplication.run(RestfulWebServiceApplication.class, args);
5 }
6 }

7 https://docs.spring.io/spring-boot/docs/2.1.13.RELEASE/reference/html/using-boot-using-springbootapplication-annotation.html

Stefan Huber: 06: SOA, Web Services & REST 17 of 24

https://docs.spring.io/spring-boot/docs/2.1.13.RELEASE/reference/html/using-boot-using-springbootapplication-annotation.html

RestController and Requests

The @RestController annotation marks a class as a service when the classpath is scanned by the
framework.

1 @RestController
2 public class MessageController {

Within the controller, @RequestMapping tells which method handle which HTTP request.
I It is a routing information from requests to Java methods.
I A request here is specified by the HTTP method and the REST resource path.
I Test it with curl http://localhost:8080/hello-nos or http http://localhost:8080/hello-nos

1 @RequestMapping(method = RequestMethod.GET, path = "/hello-nos")
2 public String helloNos() {
3 return "Hello NOS";
4 }

Stefan Huber: 06: SOA, Web Services & REST 18 of 24

Requests and parameters

Another annotation to achieve this is @GetMapping.
I Similar annotations are available for all request types.8

Method parameters can be marked as query parameters with @RequestParam.
I Test with curl "http://localhost:8080/hello-name/?name=Alice"

1 @GetMapping("/hello-name")
2 public String helloName(@RequestParam String name) {
3 return "Hello " + name;
4 }

Path parameters are are marked with @PathVariable.
I That must also be part of the mapping path using curly braces.

1 @GetMapping(path = "/hello-name-path/{name}")
2 public String helloWorldPathVariable(@PathVariable String name) {
3 return "Hallo " + name;
4 }

8 https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestMapping.html

Stefan Huber: 06: SOA, Web Services & REST 19 of 24

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestMapping.html

Default values and optional parameters

A default value can be provided for a parameter.
1 @GetMapping("/hello-name-default")
2 public String helloNameDefault(@RequestParam(defaultValue = "NoName") String name) {
3 return "Hello " + name;
4 }

A parameter can be marked as optional.
I If such a parameter is not passed to the resource, it is null.

1 @GetMapping("/hello-name-optional")
2 public String helloNameOptional(@RequestParam(required = false) String name) {
3 return "Hello " + name;
4 }

Stefan Huber: 06: SOA, Web Services & REST 20 of 24

Parameter aliases and object return values

If a parameter should have a different name in the URI than in the method, it can be given an alias.
1 @GetMapping("/hello-name-id")
2 public String helloNameId(@RequestParam("id") String name) {
3 return "Hello " + name;
4 }

A method may return an object, which is translated to JSON.
1 @GetMapping("/hello-name-id")
2 public String helloNameId(@RequestParam("id") String name) {
3 return "Hello " + name;
4 }

Stefan Huber: 06: SOA, Web Services & REST 21 of 24

Other request types

1 @PostMapping("/persons")
2 public MessageBean createPerson(@RequestBody String name) {
3 //Some Creation operation
4 return new MessageBean("Person " + name + " created");

1 @PutMapping("/persons/{id}")
2 public MessageBean updatePerson(@RequestBody String name, @PathVariable Long id) {
3 //Some Update operation
4 return new MessageBean("ID: " + id + ", Person: " + name + " updated");

1 @DeleteMapping("/persons/{id}")
2 public MessageBean deletePerson(@PathVariable Long id) {
3 //Some Delete operation
4 return new MessageBean("ID: " + id + " deleted");

Test it on the command line:9
1 curl -X POST -H 'Content -Type: application/json' -d 'Harry' http://localhost:8080/

↪→ persons
2 http POST localhost:8080/persons "name=Harry" # Sends JSON request data

9 In real code, of course, passes a JSON structure that encodes a persons data. And a proper RESTful web service would return information about its ID and a URI to retrieve the person.

Stefan Huber: 06: SOA, Web Services & REST 22 of 24

Getting started

Literature:
I There are many good tutorials, primarily the one from the Spring website:

https://spring.io/guides/gs/spring-boot/.
I Craig Walls. Spring Boot in Action. 1st ed. Manning Publications, Jan. 2016, p. 264. isbn:

978-1617292545

Starting with an application:
I Use the Spring Initializr here: https://spring.io/guides/gs/spring-boot/#scratch.
I Use the integration into your favorite IDE, if available.
I Clone an existing project and adapt it, e.g., the one from the lecture notes or the one from the

spring.io tutorial.

Stefan Huber: 06: SOA, Web Services & REST 23 of 24

https://spring.io/guides/gs/spring-boot/
https://spring.io/guides/gs/spring-boot/#scratch

REST versus RPC

Very often, any “web API with URLs” is called REST. That is a misconception:
I If your API feels like RPC then it is not REST. REST is not just HTTP, nice URLs or CRUD.

REST is about resources. RPC is about procedure calls.
I The URI refers to resources. If it contains a verb, like example.com/addCar, it feels like a

procedure. You probably are thinking the wrong way.

A RESTful API is about HATEOAS:
I Loose coupling by using the API with zero prior knowledge.
I See https://spring.io/guides/tutorials/rest/ on how Spring Boot supports link creation.

Stefan Huber: 06: SOA, Web Services & REST 24 of 24

example.com/addCar
https://spring.io/guides/tutorials/rest/

References I

[Wal16] Craig Walls. Spring Boot in Action. 1st ed. Manning Publications, Jan. 2016, p. 264. isbn:
978-1617292545.

Client of a web service

The org.apache.http package contains methods that let an Java application consume web services.1011

I This example uses the CloseableHttpClient class to communicate with the server.
I Also supports state management (sesions, cookies), authentication, caching, multi-threaded request

execution, HTML forms, and more.
I Use curl -sv or http -v to see the HTTP protocol working.

There is a class for each request type, e.g. HttpGet.
I Its constructor takes the URI and path to the resource that should be called.
I The method execute() of CloseableHttpClient sends the request, and the response can be stored in

an CloseableHttpResponse object.
1 HttpGet get = new HttpGet(serviceProvider + "//persons?name=Harry");
2

3 // Sends the request and stores the response
4 CloseableHttpResponse response = httpClient.execute(get);

10 https://hc.apache.org/httpcomponents-client-ga/tutorial/html/index.html
11 Since Java 11, there is also a similar java.net.http.HttpClient. A much more basic class java.net.HttpURLConnection exists since Java 1.1.

Stefan Huber: 06: SOA, Web Services & REST 25 of 24

https://hc.apache.org/httpcomponents-client-ga/tutorial/html/index.html

Parameters and responses

Parameters for a POST request can be passed by setting the content entity.12

1 post.setHeader("Content -type", "application/json");
2

3 CloseableHttpResponse response = httpClient.execute(post);

The service response contains, among other things, the message from the server.
I Here it is parsed as a JSON object.

1 if (entity != null) {
2 String result = EntityUtils.toString(entity);
3 JSONObject json = new JSONObject(result);
4 return json.getString("message");
5 }

12 https://hc.apache.org/httpcomponents-client-ga/tutorial/html/fundamentals.html#d5e95

Stefan Huber: 06: SOA, Web Services & REST 26 of 24

https://hc.apache.org/httpcomponents-client-ga/tutorial/html/fundamentals.html#d5e95

	Course formalities
	Basics of the Java language and ecosystem
	Lab: Formalities and grading
	Lab 1: Java and git warm ups
	Classes and Objects in Java
	Encapsulation and Inheritance
	Polymorphism in Java

	Some further remarks
	Exceptions
	Threads and Processes
	Java I/O
	Network Programming
	Client-server architectures
	Autoboxing and reflection
	Distributed systems and middleware
	Remote Procedure Call
	Object-based architectures
	Appendix

