
Numerics and
industrial algorithms

Stefan Huber

Dpt. for Information Technologies and Digitalisation
Salzburg University of Applied Sciences

Winter 2023

Last change: Stefan Huber on 2024-01-11 09:26:48 +0100 by commit 013476e

Contents

Contents iii

0 Introduction 1

I Numerical programming 5

1 Representation of numbers 7
1.1 The b-adic expansion . 7

1.1.1 Mathematical basics . 7
1.1.2 Finite representations . 8

1.2 Hardware number formats . 11
1.2.1 Integers . 11
1.2.2 IEEE 754 floating-point numbers . 12
1.2.3 Fixed-point formats . 13

2 Computing with numbers 17
2.1 Floating-point arithmetic . 17

2.1.1 Rounding . 17
2.1.2 Error and accuracy . 18
2.1.3 Machine operations . 18

2.2 Numerical analysis . 19
2.2.1 Numerical algorithms . 19
2.2.2 Condition of a problem . 21
2.2.3 Stability of an algorithm . 23

II Numerical mathematics 25

3 Systems of linear equations 27
3.1 Introduction . 27
3.2 Gaussian elimination . 27

3.2.1 Right triangular matrix and back substitution 27
3.2.2 Pivoting . 28
3.2.3 Time complexity . 29
3.2.4 Multiple right-hand sides . 30

3.3 Linear regression . 30
3.3.1 Overdetermined system of equations . 30
3.3.2 Normal equations . 31
3.3.3 Fitting functions . 32
3.3.4 QR decomposition . 35

iii

iv CONTENTS

3.3.5 Equilibration and regularization . 36

4 Polynomial interpolation 39
4.1 Motivation . 39
4.2 Power series . 39
4.3 Single interpolation polynomials . 40

4.3.1 Existence . 40
4.3.2 Interpolation error . 41
4.3.3 Computing interpolation polynomials . 42

4.4 Splines . 44
4.4.1 Motivation . 44
4.4.2 Cubic splines . 44

4.5 Numerical derivatives . 46
4.6 Numerical integration . 48

4.6.1 Basic integration formulas . 48
4.6.2 Extended formulas . 50

4.7 Richardson extrapolation . 50
4.7.1 Limit of a sequence . 50
4.7.2 Romberg integration . 51

III Computational Geometry 53

5 Geometric computations 55
5.1 Introduction . 55
5.2 Geometric constructions and predicates . 55

5.2.1 Construction of orthogonal vectors . 56
5.2.2 Orientation of three points . 56
5.2.3 Point location in triangles and convex polygons 57
5.2.4 Intersection of two line segments . 58
5.2.5 Point location in circle . 58

6 Convex hull 61
6.1 Convexity . 61
6.2 Quickhull . 62
6.3 Graham scan . 63
6.4 Lower bound on the time complexity . 65
6.5 Applications . 65

7 Range searching 69
7.1 Introduction . 69
7.2 Geometric hashing . 69
7.3 Hierarchical data structures . 71

7.3.1 Quadtrees . 71
7.3.2 k-d trees . 72

CONTENTS v

8 Graphs 75
8.1 Basic notions . 75
8.2 Paths, cycles and trees . 76
8.3 Weighted graphs . 80
8.4 Planar graphs and geometric graphs . 82

8.4.1 Planar graphs . 82
8.4.2 Geometric graphs . 84

9 Voronoi diagram and Delaunay triangulation 87
9.1 Definition and properties . 87

9.1.1 Voronoi diagram of points . 87
9.1.2 Delaunay triangulation . 89

9.2 Computation . 90
9.2.1 Incremental construction of Voronoi diagrams 90
9.2.2 Complexity and implementations . 92

9.3 Applications . 92
9.3.1 Terrain interpolation . 92
9.3.2 Euclidean MST and TSP . 94

10 Skeleton structures 95
10.1 Motivation . 95
10.2 Medial axis . 95
10.3 Generalized Voronoi diagrams . 97

10.3.1 Introduction . 97
10.3.2 Straight-line segments and circular arcs . 97
10.3.3 Polygon with holes . 99
10.3.4 Computing generalized Voronoi diagrams 100

10.4 The grassfire model, offsetting and tool paths . 101
10.5 Straight skeletons . 101

IV Appendices 103

A Selected details 105
A.1 Computing cubic splines . 105
A.2 Proof sketch for in-circle point location . 106

Bibliography 109

Index 111

vi CONTENTS

Chapter0
Introduction

A philosophical introduction. Computer science and mathematics both belong to the struc-
tural sciences. The structural sciences investigate formal systems and abstract structures, like
sets, functions, mathematical spaces, algorithms, programs, databases, software architectures
and the like. On the other hand, physics or chemistry are natural sciences. They investigate
phenomena that we observe in our reality.1

The typical subfields of mathematics used in computer science are discrete, like graphs, ab-
stract algebra, number theory and the like. The typical subfields of mathematics used in physics
– at least for the purpose of engineering – are continuous, like the Euclidean geometry in ℝ3 or
differential equations, which describing phenomena in mechanics, electromagnetism, thermo-
dynamics and so on. This is why we tend to find integers in computer science but real numbers
in physics.

This course is about selected topics that arise from the application of computer science to a
continuous mathematical world, as they arise when we deal with problems of the natural sci-
ences, in particular in physics, and engineering. More precisely, this course is about computer
science applied to the disciplines of linear algebra, calculus, geometry and topology. When we
apply computer science to the real, continuous world, in some sense, we leave the “natural habi-
tat” of computer science. Operations on integers are performed in an exact manner – without
numerical loss – by a (digital) computer, but dealing with real numbers is fundamentally im-
possible for a computer.2 We are left with approximations of real numbers and each operation
introduces loss of precision. The field of numerical analysis investigates the challenges that arise
from this fact.

The figure at the title page of these lecture notes exemplifies the type of problems we discuss
here. It has been computed by Stalgo, a software package to compute so-called straight skele-
tons.3 We are given a shape forming the letters “FHS”. Suppose we want to mill out the interior
or exterior with a CNC milling machine. In order to do so, we have to compute tool paths for
the machine.

1The natural sciences use mathematics for modeling and as a language on one hand and as a tool to draw conclusions
and extrapolations on the other hand. The classical engineering sciences sit on top of the natural sciences and leverage
insights on our real world for technical mechanisms and constructions. Computer science is in some sense different to
the classical engineering sciences as it builds upon mathematics directly. Brooks reflects on the nature of programming
in his seminal work in the section called “The Joys of the Craft”, when he refers to programming as “slightly removed
from pure thought-stuff” and “building castles in the air, from air, creating by exertion of the imagination” [20, p. 7],
which highlights the mathematical nature of programming.

2There are uncountably many real numbers, but there are only countably many strings over a finite alphabet, so we
cannot even represent all possible real numbers even if we would have unlimited memory, like a Turing machine with
its infinite memory tape. In particular, there are more real numbers than computer programs or Turing machines. So in
this sense we really leave the natural habitat of computer science.

3https://www.sthu.org/code/stalgo/

1

https://www.sthu.org/code/stalgo/

2 CHAPTER 0. INTRODUCTION

One strategy is to compute a family of so-called offset curves that are parallel to the shape.
But how dowe precisely define what an offset curve is?4 How dowe compute them in a compu-
tationally efficient and numerically stable way? How do we actually test whether the CNC tool
center is currently located within the letter shapes or outside? How can we approximate parts
of the tool paths with a smoother representation?

The organization of these lecture notes. This course is split into three parts: Numerical pro-
gramming, numerical mathematics and computational geometry. The first part deals with num-
ber representation and numerical analysis. It forms a foundation for numerical computations.
The second part is about numerical algorithms within mathematics, in particular linear algebra
and calculus.

This first two parts are often summarized by the field called numerical mathematics, but since
we put some emphasis also on technical details and programming, we instead call the first part
numerical programming. The following literature is recommended for further reading:

• The lecture notes of Johann Linhart are an excellent and dense compilation on the main
topics of numerical mathematics. Johann Linhart was professor at the math department
of the University of Salzburg and his lecture notes put an emphasis on the mathematical
point of view.
[18] Johann Linhart. Numerische Mathematik. WS 2004/05. url: https : / / www . uni -
salzburg . at / fileadmin / multimedia / Mathematik / documents / Num . Mathematik _
WS2004.pdf

• The Numerical Recipes belongs to the standard literature of every engineer that produces
code and every computer scientist with applications in the real world. This book ships
code with a strong emphasis on numerical stability and computational speed. (However,
it has not so much emphasis on readable and clean code.)
[21] William H. Press et al. Numerical Recipes 3rd Edition: The Art of Scientific Comput-
ing. 3rd ed. New York, NY, USA: Cambridge University Press, 2007. isbn: 0521880688,
9780521880688

• A comprehensive guide onnumerical computation, scientific computing andfloating-point
arithmetics has been published by Sun microsystems. It contains an article by Goldberg
[11] that discusses many details of floating-point units.
[22] Sun One Studio. Numerical Computation Guide. 2003

The field of computational geometry is widely considered of being a part of theoretical com-
puter science, i.e., algorithm theory in the context of geometry. In recent years a development
started that expended its scope to also encompass computational topology with major applica-
tions in data analysis. The following literature is recommended for further reading:

4If we cannot tell that then we cannot judge whether an algorithm is correct or not. Then we we leave the terrain of
science.

https://www.uni-salzburg.at/fileadmin/multimedia/Mathematik/documents/Num.Mathematik_WS2004.pdf
https://www.uni-salzburg.at/fileadmin/multimedia/Mathematik/documents/Num.Mathematik_WS2004.pdf
https://www.uni-salzburg.at/fileadmin/multimedia/Mathematik/documents/Num.Mathematik_WS2004.pdf

3

• This book is largely considered as being the standard book on computational geometry. It
contains all classical topics of the field starting in the 1970s.
[4] Mark de Berg et al. Computational Geometry: Algorithms and Applications. 3rd ed. Santa
Clara, CA, USA: Springer-Verlag TELOS, 2008. isbn: 3540779736, 9783540779735

• The lecture notes of Martin Held are one of the few that also cover the topics of numeri-
cal computation for computational geometry. Martin Held is a professor at the computer
science department at the University of Salzburg.
[14] Martin Held. Computational Geometry. lecture notes. SS 2018. url: https://www.
cosy.sbg.ac.at/~held/teaching/compgeo/comp_geo.html

• The standard book on computational topology is byHerbert Edelsbrunner and JohnHarer.
Herbert Edelsbrunner is a driving figure of both fields, computational geometry and com-
putational topology. Hewas professor at University of Urbana-Champaign andDuke Uni-
versity and moved 2008 to IST Austria.
[9] Herbert Edelsbrunner and John Harer. Computational Topology - an Introduction. Amer-
ican Mathematical Society, 2010. isbn: 978-0-8218-4925-5

• This is a more recent book that puts more emphasis to discrete geometry.
[7] Satyan L. Devadoss and Joseph O’Rourke. Discrete and Computational Geometry. Prince-
ton University Press, 2011. isbn: 9781400838981

https://www.cosy.sbg.ac.at/~held/teaching/compgeo/comp_geo.html
https://www.cosy.sbg.ac.at/~held/teaching/compgeo/comp_geo.html

4 CHAPTER 0. INTRODUCTION

Part I

Numerical programming

5

Chapter1
Representation of numbers

A suitable representation of numbers plays an important role when operating with numbers in
a computational fashion. The representation of “forty-two” in the decimal system as “42” is by
far superior to the roman numeral “XLII” for the execution of arithmetic operations, such as
addition and multiplication.

The decimal system’s power allows for the ease at which we operate on numbers and to a
certain extent is a key enabler for our modern society, let it be mundane everyday use, science
and engineering, finance and business, or politics and administration. The following quote is by
Whitehead1 [24, p. 59]:

By relieving the brain of all unnecessary work, a good notation sets it free to con-
centrate on more advanced problems, and in effect increases the mental power of
the race. Before the introduction of the Arabic notation, multiplication was difficult,
and the division even of integers called into play the highest mathematical facul-
ties. Probably nothing in the modern world would have more astonished a Greek
mathematician than to learn that, under the influence of compulsory education, a
large proportion of the population of Western Europe could perform the operation
of division for the largest numbers. This fact would have seemed to him a sheer
impossibility. The consequential extension of the notation to decimal fractions was
not accomplished till the seventeenth century. Our modern power of easy reckoning
with decimal fractions is the almost miraculous result of the gradual discovery of a
perfect notation.

1.1 The b-adic expansion

1.1.1 Mathematical basics
Let us restrict ourselves to non-negative real numbers for now. The representation of forty-two
as 42 = 4 ⋅ 101 + 2 ⋅ 100 allows us to encode this number by the sequence (2, 4) of its digits. We
call this a positional number system, where the position of a digit determines the value it adds to
the number. In this concrete case it is the base-10 positional number system or decimal system for
short.

Every non-negative real number 𝑧 can be represented in the decimal system as a sequence of
digits. In a mathematically more precise notation, for each real number 𝑧 ≥ 0 there is a doubly

1Whitehead was a mathematician and philosopher. Together with his student Bertrand Russel he wrote the seminal
book Principia Mathematica.

7

8 CHAPTER 1. REPRESENTATION OF NUMBERS

infinite sequence (… , 𝑎−2, 𝑎−1, 𝑎0, 𝑎1, …) of digits 𝑎𝑖 ∈ {0, … , 9}, such that

𝑧 = ⋯ + 𝑎1 ⋅ 101 + 𝑎0 ⋅ 100 + 𝑎−1 ⋅ 10−1 + 𝑎−2 ⋅ 10−2 ⋯ =
∞
∑

𝑖=−∞
𝑎𝑖 ⋅ 10𝑖.

There is nothing magical about the 10 in the decimal system: The decimal system is just a
special case of the 𝑏-adic number expansion. That is, for every integer 𝑏 > 1 and every real 𝑧 ≥ 0
there is a doubly infinite sequence (𝑎𝑖), with 𝑎𝑖 ∈ {0, … , 𝑏 − 1} called a digit, such that

𝑧 =
∞
∑

𝑖=−∞
𝑎𝑖 ⋅ 𝑏𝑖. (1.1)

For instance, the number 𝜋 – which is not rational, not even algebraic – would be represented by
(… , 5, 1, 4, 1, 3, 0, 0, 0, …), where 𝑎0 = 3 is the digit at position 0.

The number 𝑏 is called the basis of the 𝑏-adic number expansion. When calculating with
ten fingers then typically the decimal system is easier, for a digital computer with two-valued
bits we favor the binary system – the 2-adic expansion –, and for other applications the basis 8
(octal) or the basis 16 (hexadecimal) is more favorable. It is a common notation to write the
basis as subindex when there might be confusion. By this notation we have 11 = 1110 = 138 =
10112 = 147. When the basis is larger than 10 then we use alphabetical digits a, b, c and so on,
e.g., 11 = b16 or 24 = 1a14.

If there is an index 𝑚 such that the digits 𝑎𝑖 = 0 for all 𝑖 > 𝑚 then the 𝑏-adic expansion
can be reversed, i.e., for each such sequence there is a non-negative real 𝑧 that fulfills eq. (1.1).2
Moreover, the representation is also unique if there is no index 𝑘 such that 𝑎𝑖 = 𝑏 − 1 for all
𝑖 < 𝑘. For instance, in base 10 the real number “one” is both represented as 1.0 by the sequence
(… , 0, 0, 0, 1, 0, …) and the periodic number 0.9 represented by (… , 9, 9, 9, 0, 0, …).

1.1.2 Finite representations
A real-world computer can only handle a finite number of digits, so we have to restrict the se-
quence (𝑎𝑖) of digits to a finite number of non-zero digits. For instance, the data type uint32_t
in the programming language C holds only 32 binary digits and is therefore restricted to finitely
many digits 𝑎0, … , 𝑎31.

Fixed-point numbers. In general, however, we could simply choose a fixed, finite number 𝑚
of integral digit and a finite number 𝑛 of fractional digits and obtain a so-called fixed-point number

𝑧 = 𝑎𝑚−1𝑏𝑚−1 + ⋯ + 𝑎1𝑏1 + 𝑎0𝑏0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
integral part

+ 𝑎−1𝑏−1 + ⋯ + 𝑎−𝑛𝑏−𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
fractional part

=
𝑚−1
∑

𝑖=−𝑛
𝑎𝑖𝑏𝑖. (1.2)

This fixed-point number is represented by 𝑚 + 𝑛 digits 𝑎𝑚−1, … , 𝑎0, … , 𝑎−𝑛, and all others are
zero. That is, the (decimal) point is at a fixed position. For the boundary case 𝑛 = 0 we have
ordinary integers, while for 𝑛 > 0 we can also represent non-integer numbers. If we choose
𝑚 = 0 then we obtain numbers in the interval [0, 1).

As an example, the number 𝜋 would be approximated by a fixed-point number to base 10
with 𝑚 = 2 integral digits and 𝑛 = 5 fractional digits as

𝜋 ≈ 03.14159,
2If there is no such index then the series in eq. (1.1) goes to infinity. However, if there is such an index then there is

a smallest such index and we have 𝑎𝑚 ≠ 0 or the sequence is all zero, i.e., 𝑧 = 0.

1.1. THE B-ADIC EXPANSION 9

where we intentionally also print the leading digit 𝑎𝑚−1 = 𝑎1 = 0. Let us denote by 𝑄𝑚,𝑛
𝑏 the

set of fixed-point numbers with 𝑚 integral and 𝑛 fractional digits to the base 𝑏. We can rephrase
eq. (1.2) such that

𝑧 = ⎛⎜⎜
⎝

𝑚+𝑛−1
∑
𝑖=0

𝑎𝑖−𝑛𝑏𝑖⎞⎟⎟
⎠

⋅ 𝑏−𝑛 (1.3)

and therefore 𝑧 = 𝑘 ⋅ 𝑏−𝑛 for some integer 𝑘. From eq. (1.3) we see that a fixed-point number is
just a (𝑚 + 𝑛)-bit integer scaled by 𝑏−𝑛. Another conclusion we can draw from this point of view
is that the set 𝑄𝑚,𝑛

𝑏 has the particular property of being equidistantly distributed on the interval
[0, 𝑏𝑚) with a step size of 𝑏−𝑛 between neighboring numbers. We will see that floating-point
numbers lack this property.

Floating-point numbers. The floating-point number representation extends the fixed-point
number representation by the information which index domain −𝑛, … , 𝑚 is used.

Assume we are given a real number 𝑧 > 0 and its 𝑏-adic expansion

𝑧 = 𝑎𝑚𝑏𝑚 + 𝑎𝑚−1𝑏𝑚−1 + ⋯

with 𝑎𝑚 ≠ 0. That is, 𝑚 is the largest index of a non-zero digit 𝑎𝑚. We obtain 𝑧′ from 𝑧 by
chopping3 to 𝑝 = 𝑚 − 𝑘 + 1 digits by setting

𝑧′ = 𝑎𝑚𝑏𝑚 + 𝑎𝑚−1𝑏𝑚−1 + ⋯ + 𝑎𝑘𝑏𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝 summands

≈ 𝑧. (1.4)

We can factor out 𝑏𝑚+1 and obtain the so-called normalized floating-point representation

𝑧′ = (𝑎𝑚𝑏−1 + ⋯ + 𝑎𝑘𝑏−𝑝)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑎

⋅𝑏𝑚+1 = 𝑎 ⋅ 𝑏𝑚+1. (1.5)

The number 𝑎 is calledmantissa4, the number 𝑝 is themantissa length and the number 𝑚+1 is the
exponent. Note that the mantissa is in the interval [0, 1). Following these definitions the number
𝜋 has as normalized floating-point representation to base 10 and chopped to 3 digits

𝜋 ≈ 0.314 ⋅ 101.

Itsmantissa is 0.314 and its exponent is 1. Note that in eq. (1.5) the number𝑚+1 is not considered
fixed but part of the representation along with the mantissa, which allows the decimal point to
“float”. (Conversely, the 𝑛 in eq. (1.3) is considered to be fixed.)

For technical-didactical reasons we assumed so far that 𝑧 > 0, otherwise the index 𝑚 in
eq. (1.4) may not necessarily exist. However, once we fix 𝑚 in eq. (1.5), we can of course set all
digits 𝑎𝑖 = 0 to represent 𝑧′ = 0. Nevertheless, there is no normalized floating-point representa-
tion of zero, i.e., we cannot “normalize zero”.

Distribution of numbers. In fig. 1.1 we see the distribution of fixed- and floating-point num-
bers. With loss of generality, we chose two as basis. For reasons of comparison, we use 6 digits
to encode the numbers and cover the number range [0, 2). For fixed-point numbers we chose 1
integral digit and 5 fractional digits, which leads to an equidistant distribution with a step size

3Dt. Abschneiden
4Dt. Mantisse

10 CHAPTER 1. REPRESENTATION OF NUMBERS

of 2−5 = 0.03125. For the floating-point numbers we chose 4 digits for the mantissa and 2 dig-
its for the exponent. We chose the exponent range as −2, … , 1. That is, each interval [0, 2𝑒) for
𝑒 ∈ {−2, … , 1} contains 24 = 16 equally spaced numbers.

As we can clearly see, floating-point numbers do not possess a “uniform resolution”, but it
rather depends on the interval [0, 2𝑒) in which a value falls into. This simple fact has profound
consequences. For instance, in general we cannot represent the sum of two floating-point num-
bers in the same representation when we move to a coarser interval. In contrast, fixed-point
numbers can be precisely added.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
(a) Fixed-point numbers with 1 integral digit and 5 fractional bits.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
(b) Floating-point numbers with 4 digits for the mantissa and 2 bits for the exponent.

Figure 1.1: Distribution of fixed- and floating-point numbers to cover the range [0, 2). In both
cases the basis is two and in total 6 digits were used for their representation.

Note that there are 26 = 64 distinct fixed-point numbers, but only 40 distinct floating-point
numbers. For instance, the number zero is represented four times, namely as 0.00002 ⋅2𝑘 for each
𝑘 ∈ {−2, 1, 0, 1}. But also the identity 0.11002 ⋅ 2−1 = 0.01102 ⋅ 20 = 0.00112 ⋅ 21 leads to multiple
representations of the same number; the latter two representations are called denormalized – in
contrast to normalized – since their most-significant digit6 in the mantissa is zero.

If we add one further digit to fixed-point representation as fractional digit then we place
between each two neighboring numbers in fig. 1.1a an additional number. The same is true for
fig. 1.1b if we add a digit to the mantissa. If, however, we add a digit to the exponent then we
can extend the range of the exponent to −6, … , 1 and we effectively add 16 numbers for each of
the four intervals [0, 2𝑘) with 𝑘 ∈ {−6, −5, −4, −3}, some of which already being covered. The
smallest positive number we can then represent is 0.00012 ⋅ 2−6 = 2−10 = 0.0009765625, while in
𝑄1,6

2 the smallest positive number is 2−6 = 0.015625.
So the floating-point representation allows us to cover a much larger range in terms of order

ofmagnitude. In otherwords, on a logarithmic scale, as shown in fig. 1.2, the floating-point num-
bers are more evenly spaced than fixed-point numbers. Any 32-bit fixed-point number format
(like the integers) spans less than 10 decimal orders of magnitude, while a 32-bit floating-point
number in IEEE 754 spans 77 decades. The diameter of the observable universe is probably less
than 1027m and the Planck length is more than 10−35m, so we could express the entire range of
63 decades with 32-bit floating-point numbers of IEEE 754. Floating-point numbers can even ex-
press the wealth of Bill Gates, but 32-bit integers cannot. Any 64-bit fixed-point number format
spans about 19 decades, while the 64-bit floating-point numbers of IEEE 754 spans more than
616 decimal orders of magnitude.

5The sum may exceed the range covered and cause an overflow, but this issue is of an essentially different nature.
6The most-significant digit 𝑎𝑖 is the one with the largest index 𝑖. It has the most influence on the number.

1.2. HARDWARE NUMBER FORMATS 11

0.015625 0.125 0.25 0.5 1.0 2
(a) Fixed-point numbers with 1 integral digit and 6 fractional digits.

0.015625 0.125 0.25 0.5 1.0 2
(b) Floating-point numbers with 4 digits for the mantissa and 3 digits for the exponent.

Figure 1.2: Distribution of fixed- and floating-point numbers on a logarithmic scale. In both
cases the basis is two and 7 digits were used for their representation.

1.2 Hardware number formats

The previous introduction of fixed- and floating-point numbers based on the 𝑏-adic expansion
is suitable for mathematical analysis; we will make further use of it in section 2.1. In real-world
applications, however, the basis 𝑏 is essentially always two7, but we also need to deal with neg-
ative numbers, which we ignored so far for the sake of simplicity. So let us assume 𝑏 = 2 as
the basis for the remainder of this section and discuss real-world number formats. A digit is
therefore called a bit (binary digit).

1.2.1 Integers
Non-negative integers can directly be treated as fixed-point numbers with 𝑛 = 0 fractal bits and
𝑚 > 0 integer bits. So an 𝑛-bit unsigned integer with the bits 𝑎𝑛−1, … , 𝑎0 is an element of 𝑄𝑛,0

2 and
encodes the number

𝑧 =
𝑛−1
∑
𝑖=0

𝑎𝑖2𝑖. (1.6)

By eq. (1.6), the number 𝑧 can attain any integer number in the range [0, 2𝑛 − 1].
To also accommodate negative integers, one could simply let 𝑎𝑛−1 encode the sign, which

would give the one’s complement format.8 In this formatwewould actually distinguish between
the encoding of +0 and −0. We can also ask whether (+0) + (−0) shall result in +0 or −0 and
whether (−0)+(+0) gives the same result, i.e., whether the operation + fulfills the commutative
property9. Arithmetics with one’s complement is more complicated.

Instead, the two’s complement, which has been proposed by John von Neumann, became the
dominant format. In two’s complement an 𝑛-bit signed integer with the bits 𝑎𝑛−1, … , 𝑎0 encodes

7Indeed, the binary coded decimal (BCD) format uses bits to encode numbers, but only to represent decimal digits.
That is, the arithmetic is actually based on the decimal system. Legal requirements that financial software must be free
of rounding errors essentially implies to do the math in the decimal system. For instance, 0.110 has infinitely many
non-zero digits in the 2-adic expansion.

8To be precise, in the one’s complement we negate a number by flipping all bits, so −1 is encoded by all bits set except
the least-significant bit.

9The commutative property is an essential property and one should think twice sacrificing it. In particular, we do not
end up with a so-called commutative group anymore from an algebraic point of view. On the other hand, there are other
symmetry properties we should consider when defining the operator +. For instance, how would we argue a tendency
towards +0 in the results and break symmetry with −0? In a certain sense, we would violate the philosophical principle
of Occam’s razor, and we should think twice again. By the way, as a personal remark, Occam’s razor turned out to be
an important design guideline for technical systems .

12 CHAPTER 1. REPRESENTATION OF NUMBERS

the number

𝑧 = −𝑎𝑛−12𝑛−1 +
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖. (1.7)

By eq. (1.7), the number 𝑧 can attain any integer number in the range [−2𝑛−1, 2𝑛−1 − 1].
Figure 1.3 illustrates eq. (1.6) and eq. (1.7). It also illustrates that arithmetic with signed

numbers in two’s complement is essentially the same as arithmetic with unsigned numbers on
a bit level: If we want to add the number 5 to a number then we simply go 5 steps in positive
(clockwise) direction. In fig. 1.3 we have 4-bit unsigned and signed integers. In case of signed
integers, adding 5 to −2 (encoded as 1110) gives us 3 (encoded as 0011). Likewise, for unsigned
integers adding 5 to 14 (encoded as 1110) gives 3 (encoded as 0011) modulo 24. This example
illustrates a key aspect: On a bit level we executed the same calculation and it can be trivially
implemented in hardware.10

00
00

0

00
01

1

001
0

2

0011 3

0100 40101
5

0110

6

0111

7

1000

8

1001
9

1010

10

1011

11

110012

110
113 11

10

14

11
11

15

(a) 4-bit unsigned integers
00

00

0

00
01

1

001
0

2

0011 3

0100 40101
5

0110

6

0111

7

1000

-8

1001

-7

1010

-6

1011

-5

1100-4

110
1-3 11

10

-2

11
11

-1

(b) 4-bit signed integers

Figure 1.3: Unsigned and signed 4-bit integers. Adding numbers works the same way on a bit
level.

1.2.2 IEEE 754 floating-point numbers
The prevalent floating-point number format in real-world processors is given by the IEEE 754
standard [1] of the year 1985. The most common binary floating-point data types from this
standard are single precision (32 bit) and double precision (64 bit), but there are others11. The
binary formats of those two data types are illustrated in fig. 1.4. The mantissa 𝑎 is obtained by

𝑎 = 1.𝑀2 = 1 + 𝑀 ⋅ 2−𝑝,

where in “1.𝑀2” we put the mantissa bits 𝑀 as fractional part behind “1.”, while in “1+𝑀 ⋅2−𝑝”
we see 𝑀 as an encoding of an unsigned integer.

This definition differs slightly from 𝑏-adic floating-point numbers: Note that for 𝑏 = 2 the
only non-zero digit is 1. That is, the leading non-zero digit is always 1, so we do not need to
explicitly store it. (The attentive reader may have noticed that this argument does not work for

10A cascade of 𝑛 full adders realizes an 𝑛-bit adder digital circuit.
11The Intel x87 floating-point unit also knows a 80 bit format with 64 bits of mantissa. The rise of machine learning in

recent years led to the bfloat16 format with 8 bits of exponent and 7 bits mantissa.

1.2. HARDWARE NUMBER FORMATS 13

denormalized numbers.12) The real number 𝑧, which is encoded as a binary pattern according
to fig. 1.4, is then given by

𝑧 = (−1)𝑆 ⋅ (1 + 𝑀 ⋅ 2−𝑝)⏟⏟⏟⏟⏟⏟⏟
𝑎

⋅2𝐸−𝐵, (1.8)

where 𝑝 is the mantissa length (23 for single precision, 52 for double precision) and 𝐵 is the
so-called bias (127 for single, 1023 for double).13

𝑆 𝐸 𝑀

1 bit 8 bits 23 bits

𝑆 𝐸 𝑀

1 bit 11 bits 52 bits

Figure 1.4: The binary layouts of IEEE 754 foating-point numbers with single and double preci-
sion. The sign bit is given by 𝑆, the exponent bits by 𝐸 and the mantissa bits by 𝑀.

In addition to eq. (1.8) certain binary patterns have a distinguished meaning: A zero is rep-
resented by 𝐸 = 𝑀 = 0 and we distinguish between +0 and −0 depending on 𝑆.14 The largest
possible exponent, when 𝐸 = 11 ⋯ 12, is used to represent +∞ and −∞, but also NaN (not a
number).15 This allows for the following arithmetic laws in IEEE 754:

1.0 ⋅ ±0.0 = ±0.0 −1.0 ⋅ ±0.0 = ∓0.0
1.0 ⋅ ±∞ = ±∞ −1.0 ⋅ ±∞ = ∓∞

1.0 ÷ ±0.0 = ±∞ −1.0 ÷ ±0.0 = ∓∞
1.0 ÷ ±∞ = ±0.0 −1.0 ÷ ±∞ = ∓0.0

±0.0 ÷ ±0.0 = NaN ±∞ ÷ ±∞ = NaN
±0.0 ⋅ ±∞ = NaN

The IEEE 754 standard is extensive and the above presentation gives only a very limited
excerpt. In fact, a fully featured implementation of IEEE 754 in a processor is far from being
trivial.16 Goldberg [11] provides many more details regarding programming with IEEE 754
floating-point numbers.

1.2.3 Fixed-point formats
Fixed-point numbers typically span a significantly smaller range than floating-point numbers,
as we learned in section 1.1.2. However, fixed-point numbers still possess a couple of significant

12For 𝑏-adic floating-point numbers we called any representation denormalized, where the most-significant digit of
the mantissa was non-zero. In IEEE 754, the denormalized numbers are those where 𝐸 = 0 and 𝑀 ≠ 0. That is, if 𝐸 = 0
then we interpret the number as 0.𝑀2. Handling denormalized numbers can lead to a performance penalty and often
we can instruct compilers to be less strict in handling such numbers according the IEEE 754 standard.

13The exponent is therefore not encoded by two’s complement!
14See also the footnote on distinguishing between +0 and −0 for the one’s complement on page 11. The IEEE 754

standard defines all these cases.
15Actually, different cases of NaN are distinguished.
16Processor bugs in the FPU (floating-poin unit) are not entirely unusual. The best known example is probably the

infamous FDIV bug of early Intel Pentiumprocessors [19]. Also, in the embedded domain some processors only provide
a limited feature set of the IEEE 754.

14 CHAPTER 1. REPRESENTATION OF NUMBERS

advantages:
Fixed-point arithmetic is exact and arithmetic operations do not introduce numerical errors.

This is why fixed-point arithmetic is preferred over floating-point arithmetic in financial soft-
ware, like in GNU Cash.

IEEE 754-compatible FPUs are hard to implement but fixed-point arithmetic is essentially as
simple as integer arithmetic. This makes them favorable for small or cheap embedded proces-
sors, signal processors, or dedicated graphics hardware, whichmay lack a FPU. For instance, the
infamous 3D computer game Doom17 used 32 bit signed fixed-point numbers with 𝑚 = 15, 𝑛 =
16, where an increment was 2−16. This allowed Doom to be run on Intel 386 machines.

A typical application in digital signal processing is as follows: An analog-digital converter
produces a signal that is further processed, say, by a FIR filter. The domain of the signal is often
considered to be in a unit interval, like [0, 1] or [−1, 1]. This is why a digital signal processor (DSP)
often provides native data types and instructions for fixed-point arithmetic.

Q format. For binary fixed-point number formats there are a couple of notations to define
them. As a reference to the rational numbers ℚ, Texas instruments popularized the so-called Q
format:

• Q𝑚.𝑛 refers to signed fixed-point numbers with 𝑚 integer bits and 𝑛 fractional bits.

• Q𝑛 refers to the set of signed fixed-point numbers with 𝑛 fractional bits and the number
𝑚 of integral bits is implicitly given: It is either the number of remaining bits from the
register size or is meant to be zero.

Unsigned integers are indicated by prefxing U to Q, so the set of UQ𝑚.𝑛 numbers equals
the set 𝑄𝑚,𝑛

2 . There is an ambiguity on whether to count the sign bit for signed numbers. One
convention says the sign bit is included in 𝑚, so Doom would have used numbers in the format
𝑄16.16. An alternative convention says that the sign bit is not part of 𝑚, and hence Doomwould
have used 𝑄15.16. However, by considering 𝑚 + 𝑛 and comparing with the register size, it is
possible to resolve the ambiguity in practice.

If we have a binary representation of a number in Q𝑚.𝑛 or UQ𝑚.𝑛 format, as illustrated in
fig. 1.5, then we simply read the bit pattern as a signed or unsigned integer and think of it being
scaled by 2−𝑛, compare also with eq. (1.3).

𝑚 bits 𝑛 bits

Figure 1.5: A number in Q𝑚.𝑛 or UQ𝑚.𝑛 format is interpreted as an integer scaled by 2−𝑛.

Embedded C. Having fixed-point arithmetic hardware is one thing, but we also require ac-
cordingmechanisms on the software side. For instance, the C programming language knows the
data types float and double, which are the IEEE 754 floating-point number types in single- and
double-precision. However, standard C – like C99 or C11 – does not know fixed-point number
types and so often vendor-specific C compilers shipped extensions to accommodate fixed-point
number types.

Since 2004 there is an ISO/IEC standard, briefly called Embedded C, which is based on DSP-
C [8]. The current and second version from 2008 is called ISO/IEC TR 18037:2008 [17]. This

17Doom was released in 1993 and constitutes a milestone in games development not only for its 3D graphics.

1.2. HARDWARE NUMBER FORMATS 15

standard adds fixed-point arithmetic data types andmore.18 The GCC C-compiler supports this
standard since 2007 [10]. The Clang compiler of LLVM has some preliminary implementation
since 2018 [5]. However, neither fully supports this standard yet.19

Embedded C defines two new type specifiers _Fract and _Accum, which can be used in combi-
nation with the type specifiers short, long, signed20 and unsigned and gives rise to the 12 types in
table 1.1. The specifier _Fract refers to a fixed-point data type with no integral bits, so the num-
ber range is within [−1, 1) for signed types and [0, 1) for unsigned types. In contrast, _Accum also
defines integral bits and is, for instance, used when building sums of _Frac numbers, i.e., accu-
mulating them. This is why the number of fractional bits of the _Accum types match the number
of bits of the corresponding _Fract types.

In addition, there is a type specifier _Sat that makes a type a saturating fixed-point type.
Adding two large (positive or negative) number of a saturating type does not cause an overflow,
as with ordinary integer numbers, but results in the largest (positive or negative) number in the
respective number range. This is often the intended behavior in signal processing, e.g., think
of mixing audio signals. The header file stdfix.h defines sat, fract, and accum as the natural
spelling of _Sat, _Fract, and _Accum. The following code listing illustrates the usage of these
fixed-point number types:

sat fract x = -0.7r; // Suffix r for fract literals
sat fract y = -0.7r;
printf("x + y = %f\n", (double) (x+y)); // Prints -1.0 due to sat
sat accum a = 0.7k; // Suffix k for accum literals
sat accum b = 0.7k;
printf("a + b = %f\n", (double) (a+b)); // Prints 1.4 due to accum

As usual, the C language does not define the sizes of data types but minimum sizes, which
are given in table 1.1. The actual sizes are implementation dependent and may differ between
compilers, operating systems or processors. However, there are macros like FRACT_FBIT, which
gives the number of fractional bits of _Fract, or ULACCUM_IBITwhich gives the number of integral
bits of unsigned long _Accum.

Type Suffix Min.
short _Fract hr Q7
_Fract r Q15
long _Fract lr Q23
unsigned short _Fract uhr UQ7
unsigned _Fract ur UQ15
unsigned long _Fract ulr UQ23

Type Suffix Min.
short _Accum hk Q4.7
_Accum k Q4.15
long _Accum lk Q4.23
unsigned short _Accum uhk UQ4.7
unsigned _Accum uk UQ4.15
unsigned long _Accum ulk UQ4.23

Table 1.1: ISO/IEC TR 18027 fixed-point data types with literal suffix and minimum sizes. Here
the Q-format does not add the sign bit to the integral bits.

18Often, embedded processors follow a Harvard architecture, where program and data memory do not reside in the
same address space. Hence, there is a need to specify the address space to which a pointer in C refers to and Embedded
C adds support for that.

19For instance, clang version 9.0 does not yet support conversion from fixed-point numbers to floating-point numbers
or provides the corresponding standard header files. On the other hand, GCC only supports certain targets, for instance
x86 is not supported for GCC version 9, but clang does.

20As usual for C, signed does not need to be explicitly specified.

16 CHAPTER 1. REPRESENTATION OF NUMBERS

Chapter2
Computing with numbers

2.1 Floating-point arithmetic

2.1.1 Rounding

In order to obtain from a real number 𝑧 a floating-point number 𝑧 with a given mantissa length,
we could simply perform the 𝑏-adic expansion and apply chopping. A more accurate result,
however, can be obtained if we apply the “usual” rounding: We replace in eq. (1.4) the digit 𝑎𝑘
by 𝑎𝑘 + 1 if 𝑎𝑘−1 ≥ 𝑏/2. However, if this results in 𝑎𝑘 = 𝑏 then we set 𝑎𝑘 = 0 and increment 𝑎𝑘+1
by one (carry-over), and so forth.

We denote the result by rd𝑠,𝑏(𝑧) and call it themachine number obtained by rounding to man-
tissa length 𝑠 to the basis 𝑏. For example

rd2,10(0.134) = 0.13 rd2,10(0.135) = 0.14 rd3,10(0.1996) = 0.200,

where in the last example choppingwould have resulted in 0.199, which is less accurate. Among
all possible machine numbers of length 𝑠 to the basis 𝑏 the machine number rd𝑠,𝑏(𝑧) is closest to
the real number 𝑧. Also note that rounding and chopping yields a rational number from a real
number. All machine numbers are rational numbers.1

The above method ignores the size of the resulting exponent and the issue of overflow for the
sake of simplicity. Of course, a real-world implementation of IEEE 754 needs to deal with these
cases. If the exponent becomes too small then we could simply set the resulting number to +0
or −0. Similarly, if the exponent becomes too large then we can set the resulting number to +∞
for −∞. Besides that IEEE 754 also knows various kinds of rounding modes. The one explained
above is known as round to nearest,2 but there are also round toward 0, round toward +∞, and round
toward −∞. The rounding mode then again influences how overflow is handled.3

1In addition, IEEE 754 knows special “numbers” like +0, −0, +∞, −∞ or NaN.
2Actually, IEEE 754 round to nearest applies round half to even, where the tie break is not rounding up but rounding

to the nearest even integer. So 23.5 and 24.5 are both round to 24. This is also known as the banker’s rounding. It reduces
the accumulation of rounding errors, whereas tie breaking by rounding up has a bias towards +∞.

3For instance, if we choose round toward −∞ or round toward 0 and there is a overflow in positive direction then
the result is not +∞ but the largest finite positive machine number.

17

18 CHAPTER 2. COMPUTING WITH NUMBERS

2.1.2 Error and accuracy
Let ̃𝑧 denote some approximation of the number 𝑧. Then |𝑧 − ̃𝑧| is called the absolute error of the
approximation and

∣
𝑧 − ̃𝑧

𝑧 ∣

is called the relative error. Note that the relative error is only defined for 𝑧 ≠ 0. For instance, let
�̃� = 3.14 be an approximation of 𝜋 = 3.14159 … then the absolute error is 0.00159 … and the
relative error is 0.00159…

𝜋 ≈ 5 ⋅ 10−4, which is about 0.05%. Relative errors are often given as
percentages when adequate.

If ̃𝑧 was obtained by rounding, i.e., ̃𝑧 = rd𝑠,𝑏(𝑧), then we also speak of an absolute resp. relative
rounding error. For the rounding procedure given in section 2.1.1 the bounds

|𝑧 − ̃𝑧| ≤
𝑏𝑘

2 and ∣
𝑧 − ̃𝑧

𝑧 ∣ ≤
𝑏𝑘−𝑚

2 =
𝑏1−𝑠

2 ,

hold, where the latter is only defined for 𝑧 ≠ 0. The bound for the relative rounding error is also
called relative machine accuracy or machine epsilon. Hence, for IEEE 754 single-precision numbers
we obtain a machine accuracy of 21−24/2 = 2−24 ≈ 5.96 ⋅ 10−8 and for double-precision numbers
we obtain 21−53/2 = 2−53 ≈ 1.11 ⋅ 10−16. That is, a single-precision number is accurate for up to
about 7 decimal digits and a double-precision number for about 16 decimal digits.4

2.1.3 Machine operations
Machine operations result in machine numbers. That is, the result of machine operations onma-
chine numbers are rounded in order to again obtainmachine numbers. Instead of the usual basic
arithmetic operations +, −, … a processor therefore performs the following machine operations
⊕, ⊖, … that involves rounding:

𝑥 ⊕ 𝑦 = rd𝑠,𝑏(𝑥 + 𝑦)
𝑥 ⊖ 𝑦 = rd𝑠,𝑏(𝑥 − 𝑦)
𝑥 ⊙ 𝑦 = rd𝑠,𝑏(𝑥 ⋅ 𝑦)
𝑥 ⊘ 𝑦 = rd𝑠,𝑏(𝑥/𝑦)

Since a change of sign is not influenced by rounding, we could reduce the definition of 𝑥 ⊖ 𝑦 to
addition, i.e., 𝑥 ⊖ 𝑦 = rd𝑠,𝑏(𝑥 − 𝑦) = rd𝑠,𝑏(𝑥 + (−𝑦)) = 𝑥 ⊕ (−𝑦). That is, the following arithmetic
law holds for machine operations:

𝑥 ⊖ 𝑦 = 𝑥 ⊕ (−𝑦)

However, except the above rule, rounding has typically far-reaching consequences such that
many usual rules fail to hold! For instance, the order of operations matters because the usual
associative law does not hold anymore. For example, let 𝑏 = 10 and 𝑠 = 2 for rd𝑠,𝑏 then

(0.50 ⊕ 0.54) ⊕ (−0.53) = 1.0 ⊕ (−0.53) = 0.47
0.50 ⊕ (0.54 ⊕ (−0.53)) = 0.50 ⊕ 0.01 = 0.51

4The IEEE 754 standard does not define the term machine accuracy which unfortunately led to different definitions of
this term. Another common definition is: The machine accuracy is 𝑏1−𝑠, which is the difference between 1 and the next
larger machine number. This definition leads to a machine accuracy of 1.19 ⋅ 10−7 resp. 2.22 ⋅ 10−16 for single resp.
double precision. This definition is used for the ISO C standard, Python, Mathematica, MATLAB, or Octavia.

2.2. NUMERICAL ANALYSIS 19

In a Python interpreter we can easily demonstrate this with IEEE 754 floating point numbers as
well:

>>> e = 2**(-53)
>>> (1.0 + e) + e == 1.0
True
>>> 1.0 + (e + e) == 1.0
False

The operations also do not adhere to the distributive law as ((𝑥 ⊕ 𝑦) ⊙ 𝑧) is not necessarily (𝑥 ⊙
𝑧)⊕(𝑦⊙𝑧). Hence, different compilers, different compiler versions, different optimization levels
or seemingly trivial changes in the source code5 can influence the order of machine operations
and therefore alter the computational results, even though nothing has changed in a “usual
mathematical interpretation” based on real number arithmetic. We need to impute an error
corresponding to the machine accuracy to each single operation.

As a consequence the comparison of machine numbers can (virtually) never be done exactly
but needs to be performed by means of thresholds.6 Those so-called threshold-based or epsilon-
based comparisons introduce a fixed application-dependent 𝜖 > 0 in order to define the following
comparison operators:

𝑥=̇𝑦 ⇔ |𝑥 − 𝑦| ≤ 𝜖 𝑥<̇𝑦 ⇔ 𝑥 < 𝑦 ∧ 𝑥≠̇𝑦
𝑥≠̇𝑦 ⇔ ¬(𝑥=̇𝑦) 𝑥>̇𝑦 ⇔ 𝑥 > 𝑦 ∧ 𝑥≠̇𝑦

𝑥≤̇𝑦 ⇔ 𝑥<̇𝑦 ∨ 𝑥=̇𝑦
𝑥≥̇𝑦 ⇔ 𝑥>̇𝑦 ∨ 𝑥=̇𝑦

But note that also for these comparison operators many usual laws do not hold anymore. For
instance, the transitive law fails for =̇ and ≤̇, e.g., it can be that 𝑥=̇𝑦 and 𝑦=̇𝑧, but still 𝑥≠̇𝑧. Yet,
symmetry of =̇ and (a weaker form of) antisymmetry of ≤̇ do hold, i.e., if 𝑥≤̇𝑦 and 𝑦≤̇𝑥 then 𝑥=̇𝑦.

Finally, it should bementioned that the arithmetic operations defined in this section do not al-
ways correspond to the implementation of some FPUs. For instance, the x87 FPU implements an
80 bit extended double-precision floating-point number data type with a 64 bit mantissa. Floating-
point operations are done with this 80 bit data type and rounding to a 23 resp. 52 bit mantissa
for single or double precision is only done when the result is written into the CPU registers.
The later SSE floating-point units of Intel processors do not possess the extended double preci-
sion registers anymore and perform operations in single or double precision, which may lead to
different results, depending on what FPU unit is utilized by the compiler.

2.2 Numerical analysis

2.2.1 Numerical algorithms
An algorithm transforms input into output in order to solve a specific problem. The problem sort-
ing considers a list of numbers7 as input and asks for a sorted permutation of the list as output.
Awell known algorithm to the problem sorting is for instancemerge sort. While in algorithm the-
ory we typically ask for the time and space complexity of algorithm, which captures speed and
memory footprint, in numerical analysis we also ask for the “numerical quality” of algorithms.

5Such as switching from a debug build to a release build.
6See also the warning option -Wfloat-equal for gcc.
7In general a list of elements from a partially ordered set (poset). This not only includes numbers with the ordinary

order, ≥, but for instance also strings with the lexicographical order.

20 CHAPTER 2. COMPUTING WITH NUMBERS

Many problems in the field of numerical mathematics can be phrased as computing amathe-
matical map that takes a real 𝑛-tuple (𝑥1, … , 𝑥𝑛) as input and produces a real 𝑚-tuple (𝑦1, … , 𝑦𝑚)
as output. That is, the task is to compute a given function

𝜑∶ ℝ𝑛 → ℝ𝑚 ∶ 𝑥 ↦ 𝜑(𝑥),

where 𝑥 = (𝑥1, … , 𝑥𝑛) is the input tuple and 𝜑(𝑥) is the output tuple. For instance, let us consider
the problem of computing the roots of a quadratic polynomial 𝑎𝑧2 + 𝑏𝑧 + 𝑐 in the real variable 𝑧.
Here the input tuple would be (𝑎, 𝑏, 𝑐) ∈ ℝ3 and the output tuple would be (𝑧1, 𝑧2) ∈ ℝ2 of the
two roots.8 A concrete algorithm for this problem could follow the well known formula

𝑧1,2 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎

in order to compute the roots. Each of the operations +, ⋅, √, … we interpret as a computational
step in the algorithm, which are composed together to form a map ̃𝜑 that constitutes the algo-
rithm. That is, we could “implement” the above formula by one of many possible sequences of
steps, like the following:

⎛⎜⎜⎜⎜
⎝

𝑎
𝑏
𝑐

⎞⎟⎟⎟⎟
⎠

↦
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

−𝑏
𝑏2

𝑎𝑐
2𝑎

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

↦
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

−𝑏
𝑏2

4𝑎𝑐
2𝑎

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

↦
⎛⎜⎜⎜⎜
⎝

−𝑏
𝑏2 − 4𝑎𝑐

2𝑎

⎞⎟⎟⎟⎟
⎠

↦
⎛⎜⎜⎜⎜⎜
⎝

−𝑏
√𝑏2 − 4𝑎𝑐

2𝑎

⎞⎟⎟⎟⎟⎟
⎠

↦ ⎛⎜
⎝

−𝑏 + √𝑏2 − 4𝑎𝑐
2𝑎

⎞⎟
⎠

↦ (−𝑏+√𝑏2−4𝑎𝑐
2𝑎

)

Some problems 𝜑 possess the property that little changes in 𝑥 lead to large changes in 𝜑(𝑥).
If the input contains errors – rounding errors, measurement errors, et cetera – and we obtain
therefore an approximation ̃𝑥 of the original input 𝑥 then this can have large impact on the re-
sult. The so-called condition of a problem captures this property of a problem. The condition is
independent of the specific algorithm but is intrinsic to the problem, it lies in the nature of the
specific problem. More precisely, the condition considers the term

‖𝜑(̃𝑥) − 𝜑(𝑥)‖,

where ‖.‖ denotes the norm of a vector.
Let us now consider for a given problem𝜑 an arbitrary algorithm ̃𝜑. Different algorithmsmay

solve the same problem 𝜑 in different ways. The stability of an algorithm tells us how sensitive a
given algorithm is to changes in the input data. The stability is a property of the algorithm and
considers the term

‖ ̃𝜑(̃𝑥) − ̃𝜑(𝑥)‖.

Some algorithms ̃𝜑 for continuous problems consider certain methods of discretization. For
instance in order to differentiate a function 𝑓 ∶ ℝ → ℝ at a position 𝑥 we could consider (𝑓 (𝑥 +
ℎ) − 𝑓 (𝑥))/ℎ, but of course the result depends on our choice of the discretization step size ℎ. The
consistency of a numerical algorithm tells us to what extent the algorithm introduces numerical
errors independent of errors in the input data. More precisely, the consistency of an algorithm
considers the term

‖ ̃𝜑(𝑥) − 𝜑(𝑥)‖.
8We known from calculus that a polynomial of degree two has zero real roots or two (which might be equal). For

the sake of simplicity, we assume that roots exist.

2.2. NUMERICAL ANALYSIS 21

𝜑

𝑥 ̃𝑥

𝜑(𝑥)

Figure 2.1: The tangent on the function graph of 𝜑 at position 𝑥 has the slope 𝜑′(𝑥). At a nearby
position ̃𝑥 the function evaluates to 𝜑(̃𝑥), which can be approximated by the tangent.

2.2.2 Condition of a problem

Let us consider a problem 𝜑∶ ℝ𝑛 → ℝ𝑚, which takes as input 𝑥 ∈ ℝ𝑛 and produces an output
𝜑(𝑥) ∈ ℝ𝑚 and let us assume that 𝜑 can be differentiated.9

For the simple case where 𝑛 = 𝑚 = 1 we have a function ℝ → ℝ and we can consider its
function graph, see fig. 2.1. The function 𝜑 can be approximated by a linear function at any
position 𝑥 ∈ ℝ. That is, if we consider a ̃𝑥 ∈ ℝ close to 𝑥 then

𝜑(̃𝑥)=̇𝜑(𝑥) + 𝜑′(𝑥) ⋅ (̃𝑥 − 𝑥),

where =̇ means that the = holds only approximately.10 Similarly, we denote by ≤̇ that ≤ holds
only approximately. Then we have

‖𝜑(̃𝑥) − 𝜑(𝑥)‖ ≤̇ ‖𝜑′(𝑥)‖ ⋅ ‖ ̃𝑥 − 𝑥‖. (2.1)

The above lines were motivated for the case 𝑛 = 𝑚 = 1. However, the beauty of mathematics
(or rather the notation) unfolds here in a way such that ineq. (2.1) also holds for 𝑛, 𝑚 ≥ 1 if ‖𝜑′‖
is suitably interpreted for higher dimensions: Let 𝜑(𝑥) = (𝜑1(𝑥), … , 𝜑𝑚(𝑥)) then we denote by
𝜑′(𝑥) the Jacobian matrix

𝜑′(𝑥) =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕𝜑1
𝜕𝑥1

(𝑥) … 𝜕𝜑1
𝜕𝑥𝑛

(𝑥)
⋮ ⋮

𝜕𝜑𝑚
𝜕𝑥1

(𝑥) … 𝜕𝜑𝑚
𝜕𝑥𝑛

(𝑥)

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

.

The Jacobian of𝜑∶ ℝ𝑛 → ℝ𝑚 contains the partial derivatives of all𝑚 elements of (𝜑1(𝑥), … , 𝜑𝑚(𝑥))
by all 𝑛 dimensions of 𝑥 = (𝑥1, … , 𝑥𝑛). Hence, it generalizes the tangent slope in fig. 2.1 and if
we would have 𝑛 = 𝑚 = 1 then the Jacobian is just the ordinary derivative of 𝜑∶ ℝ → ℝ at a
position 𝑥. Next, for a matrix 𝐴 = (𝑎𝑖𝑗) we denote by ‖𝐴‖ = √∑𝑖 ∑𝑗 𝑎2

𝑖𝑗 the Euclidean matrix
norm of 𝐴. (Sometimes it turns out handy to switch to a different 𝑝-norm, but for now we leave

9If𝜑 cannot be differentiated at position 𝑥 then there is an 𝜖 > 0 such that ‖𝜑(𝑥)−𝜑(̃𝑥)‖ > 𝜖 for some ̃𝑥 ∈ [𝑥−𝛿, 𝑥+𝛿],
no matter how small 𝛿 > 0 is. That is, we cannot make the output error smaller, no matter how small we make the input
error. We will see later that this means that the relative condition is essentially infinite, which means that the problem
is in some sense infinitely ill-conditioned.

10We can interpret the right-hand side as a Taylor polynomial of degree 1. So the remainder of the Taylor series is in
𝑂(‖ ̃𝑥 − 𝑥‖2), i.e., the error of =̇ converges to zero at order ‖ ̃𝑥 − 𝑥‖2.

22 CHAPTER 2. COMPUTING WITH NUMBERS

it there.11) Hence, the norm of the Jacobian is given by

‖𝜑′(𝑥)‖ =
√
√√
⎷

𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

(
𝜕𝜑𝑗

𝜕𝑥𝑖
(𝑥))

2
.

Using this interpretation for ‖𝜑′‖ generalizes ineq. (2.1) to higher dimensions.12 Note that
ineq. (2.1) tells us by how much the output of 𝜑 may change at most if we change the input.
This immediately motivates the definition of the absolute condition of 𝜑 by

𝜅abs = ‖𝜑′(𝑥)‖

and we obtain

‖𝜑(̃𝑥) − 𝜑(𝑥)‖ ≤̇ 𝜅abs ⋅ ‖ ̃𝑥 − 𝑥‖.

We can rearrange this inequality to

‖𝜑(̃𝑥) − 𝜑(𝑥)‖
‖𝜑(𝑥)‖ ≤̇

‖𝑥‖
‖𝜑(𝑥)‖𝜅abs ⋅

‖ ̃𝑥 − 𝑥‖
‖𝑥‖ .

This inequality motivates the definition of the relative condition of 𝜑 as

𝜅rel =
‖𝑥‖

‖𝜑(𝑥)‖𝜅abs

and we obtain
‖𝜑(̃𝑥) − 𝜑(𝑥)‖

‖𝜑(𝑥)‖ ≤̇ 𝜅rel ⋅
‖ ̃𝑥 − 𝑥‖

‖𝑥‖ .

We call a problem being ill-conditioned13 if 𝜅abs or 𝜅rel are significantly greater than 1 and
otherwise well-conditioned14. However, there is no general rule to what “significantly” actually
means, so it depends on the specific application at hand.

As a simple example we consider the calculation of square roots, so our problem is given by
𝜑(𝑥) = √𝑥. We obtain 𝜅abs = |𝜑′(𝑥)| = | 1

2√𝑥
| and 𝜅rel = | 𝑥

√𝑥
⋅ 1

2√𝑥
| = 1

2 . The relative condition is
unconditionally good, however the absolute condition is bad when 𝑥 is close to zero. Also note
that the absolute condition, but also the relative condition, is not defined at 𝑥 = 0.

Condition of addition and subtraction. Wewould like to determine the condition of the addi-
tion resp. subtraction of two real numbers. So we consider 𝜑∶ ℝ2 → ℝ with 𝜑(𝑥1, 𝑥2) = 𝑥1 + 𝑥2.
The partial derivatives of 𝜑 with respect to 𝑥1 is 1 and the same holds for 𝑥2. Hence, by definition

𝜑′ = (𝜕𝜑
𝜕𝑥1

𝜕𝜑
𝜕𝑥2

) = (1 1) .

11can interpret the set of real 𝑚 × 𝑛 matrices as a vector space 𝑉 of dimension 𝑚 ⋅ 𝑛. In general, for a vector space 𝑉 a
norm ‖.‖ is any map 𝑉 → ℝ with the following properties: ‖𝑥| ≥ 0, ‖𝑥‖ = 0 ⇔ 𝑥 = 0, ‖𝜆𝑥‖ = |𝜆|‖𝑥‖, ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖
for all 𝜆 ∈ ℝ and 𝑥, 𝑦 ∈ 𝑉. The Euclidean norm is also known as the 2-norm, which is a special case of the 𝑝-norm. For
𝑉 = ℝ𝑑 and 𝑥 = (𝑥𝑖) ∈ ℝ𝑑 the 𝑝-norm of 𝑥 is defined by ‖𝑥‖𝑝 = 𝑝√∑𝑖 |𝑥𝑖|𝑝. The 1-norm is also known as sum norm as
‖𝑥‖1 = ∑𝑖 |𝑥𝑖| and the ∞-norm is also known as maximum norm ‖𝑥‖∞ because lim𝑝→∞ ‖𝑥‖𝑝 = max𝑖 |𝑥𝑖|. Likewise, we
define the 𝑝-norm of a matrix 𝐴 = (𝑎𝑖𝑗) as ‖𝐴‖𝑝 = 𝑝√∑𝑖,𝑗 |𝑎𝑖𝑗|𝑝.

12Actually, for 𝑛 = 𝑚 = 1 equality holds in ineq. (2.1). However, for higher dimensions this is not true.
13Dt. schlecht konditioniert
14Dt. gut konditioniert

2.2. NUMERICAL ANALYSIS 23

The norm of this matrix gives the absolute condition:

𝜅abs = ‖𝜑′‖ = √12 + 12 = √2.

The relative condition15 is therefore

𝜅rel = √2 ⋅
√𝑥2

1 + 𝑥2
2

|𝑥1 + 𝑥2| .

Note that when 𝑥1 = −𝑥2 then the relative condition is undefined. But even if 𝑥1 ≈ −𝑥2 then
𝜅rel is becoming very large and hence addition becomes very ill-conditioned. This leads to a very
important observation:

Adding two numbers with similar absolute values but different sign – or subtracting
two similar numbers – is very ill-conditioned!

This phenomenon is called cancellation: When subtracting two similar numbers the digits can-
cel each other out and in the floating-point representation the remaining digits constitute the
remaining significance resp. accuracy.

In the following example we calculate the difference 𝜋 − 3√31 using 4-digit floating-point to
the base 10. We obtain rd4,10(𝜋) = 0.3142 ⋅ 101 and rd4,10(3√31) = 0.3141 ⋅ 101 from which we
calculate the difference 0.1 ⋅ 10−2. The digits 3, 1, 4 canceled each other out. The exact result
would have been 𝜋 − 3√31 = 0.0212 … ⋅ 10−2. The absolute error is just 7.88 … ⋅ 10−4. However,
the relative error is about 370%, although the relative rounding errors are no larger than about
0.05%!

2.2.3 Stability of an algorithm
Manynumerical algorithms can be described as a sequence of elementary calculation steps. Each
step solves an elementary problem 𝜓1, … , 𝜓𝑛 and altogether they solve the original problem 𝜑
and hence 𝜑(𝑥) = 𝜓𝑛(… 𝜓2(𝜓1(𝑥)) …) or more briefly 𝜑 = 𝜓𝑛 ∘ ⋯ ∘ 𝜓1. The stability16 of an
algorithm results from the conditions of the individual steps 𝜓𝑖: If one step is ill-conditioned
then the entire algorithm – the “chain of steps” –– is instable.

As an examplewe consider the problemof solving the quadratic equation 𝑥2+2𝑝𝑥+𝑞 = 0. We
are only interested in the larger of possibly two solutions and we simply assume that a solution
actually exists.17 Hence, our problem 𝜑∶ ℝ2 → ℝ is given by

𝜑(𝑝, 𝑞) = −𝑝 + √𝑝2 − 𝑞.

A first algorithm could simply perform the stepwise calculations obtained from the formula
above. We then obtain the following sequence of elementary operations:
procedure QuadEquation(𝑝, 𝑞)

𝑠 ←𝑝2

𝑡 ←𝑠 − 𝑞
𝑢 ←√𝑡 ▷ 𝑢 is √𝑝2 − 𝑞

15If we would have used the 1-norm for the definitions of conditions then we would have 𝜅rel = |𝑥1|+|𝑥2|
|𝑥1+𝑥2| .

16In [18] the stability is also called condition of an algorithm.
17A real solution exists in ℝ if 𝑝2 ≥ 𝑞.

24 CHAPTER 2. COMPUTING WITH NUMBERS

𝑟 ←−𝑝 + 𝑢
return 𝑟

end procedure

If 𝑝2 ≫ 𝑞 then 𝑢 ≈ √𝑝2 = |𝑝|. In other words, if 𝑝 > 0 and 𝑝2 ≫ 𝑞 then the fourth step is ill-
conditioned because 𝑝 ≈ 𝑢 andwe suffer cancellation. But there is hope that a different algorithm
might perform better.

We may know, or at least easily verify, that the following equality holds:

−𝑝 + √𝑝2 − 𝑞 =
−𝑞

𝑝 + √𝑝2 − 𝑞
.

We interpret this equality as a mathematically reformulation of the problem. That is, as a nu-
merical problem as such it is just the same. However, the point is here that the right hand side
gives us a hint to a different algorithm – as a sequence of elementary steps – to the same problem:
procedure QuadEquationAlt(𝑝, 𝑞)

𝑠 ←𝑝2

𝑡 ←𝑠 − 𝑞
𝑢 ←√𝑡 ▷ 𝑢 is √𝑝2 − 𝑞
𝑣 ←𝑝 + 𝑢
𝑟 ←−𝑞/𝑣
return 𝑟

end procedure
This algorithm is now stable for 𝑝 > 0. However, conversely to the first algorithm, it is instable
for 𝑝 < 0 and 𝑝2 ≫ 𝑞. So depending on 𝑝 and 𝑞 we would rather choose the first algorithm or
the second algorithm from a numerical analysis point of view.

Nevertheless, both algorithms are instable when 𝑠 ≈ 𝑞, meaning 𝑝2 ≈ 𝑞, due to the second
step. However, in this case the problem 𝜑 has either no solution or the two solutions are very
close to each other as the extreme value of the parabolic function graph is close the 𝑥-axis. Hence,
little changes in 𝑝 or 𝑞 have big impacts to the solutions. In other words, our intuition says that
the problem is already ill-conditioned for 𝑝2 ≈ 𝑞, which we can confirm:

𝜅abs = ‖𝜑′(𝑝, 𝑞)‖ = ∥∥∥∥
(−1 + 𝑝

√𝑝2−𝑞
−1

2√𝑝2−𝑞)∥∥∥∥
≥

1

2√𝑝2 − 𝑞

because in general ‖ (𝑥 𝑦) ‖ ≥ |𝑦| for all 𝑥, 𝑦 ∈ ℝ. That is, this mathematical framework tells
us that there is no hope in searching for another algorithm that would be numerically stable in
this case, because the issue lies within the numerical problem itself, not a particular numerical
algorithm.

Part II

Numerical mathematics

25

Chapter3
Systems of linear equations

Systems of linear equations play an essential role not only for all technical disciplines, but also in
physics, chemistry, economics, and essentially in all fields where mathematics in general plays
a role. In computer science alone, we have applications in computer vision, machine learning,
computational geometry, and so on. In industrial automation a prime example of systems of
linear equations is the forward and backward kinematic in robotics.

3.1 Introduction
In the following we consider a system

𝑎11𝑥1 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1
⋮

𝑎𝑛1𝑥1 + ⋯ + 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

of linear equations with variables 𝑥𝑗 ∈ ℝ and real coefficients 𝑎𝑖𝑗 ∈ ℝ at the left-hand side and
constants 𝑏𝑖 ∈ ℝ at the right-hand side. Using matrices we can write more concisely

𝐴 ⋅ 𝑥 = 𝑏,

andwe assume that the real 𝑛×𝑛 matrix 𝐴 = (𝑎𝑖𝑗) is regular1, 𝑥 = (𝑥1, … , 𝑥𝑛) and 𝑏 = (𝑏1, … , 𝑏𝑛).
Then we know from linear algebra that there is a unique 𝑥 ∈ ℝ𝑛 such that 𝐴⋅𝑥 = 𝑏. Moreover, if
we would know the inverse Matrix 𝐴−1 of 𝐴 already then we could simply calculate 𝑥 = 𝐴−1 ⋅ 𝑏.

In the following, wewill discuss how to solve linear systems, how to compute the inverse 𝐴−1

and what we can say in terms of numerical stability. Then we generalize the problem setting to
non-regular matrices 𝐴, which leads us to approximation tasks and regression, the principle of
least squares and certain matrix factorizations of 𝐴.

3.2 Gaussian elimination

3.2.1 Right triangular matrix and back substitution
The well known Gaussian elimination is able to solve the system 𝐴 ⋅ 𝑥 = 𝑏, but can also be used
to find the inverse 𝐴−1. The Gaussian elimination method is also known as row reduction, which
essentially already describes how it works:

1Regular means invertible. That is, a matrix 𝐴−1 of the same dimension exists such that 𝐴⋅𝐴−1 = 𝐴−1 ⋅𝐴 = 𝐼, where
𝐼 is the identity matrix. Another common notation is 𝐼 = (𝛿𝑖𝑗), where 𝛿𝑖𝑗 denotes the Kronecker-delta, which is 1 when
𝑖 = 𝑗 and 0 otherwise. A square matrix 𝐴 is regular iff its determinate det𝐴 ≠ 0.

27

28 CHAPTER 3. SYSTEMS OF LINEAR EQUATIONS

In a first step we subtract from the 𝑖-th equation the 𝑎𝑖1/𝑎11-multiple of the first equation for
all 2 ≤ 𝑖 ≤ 𝑛. We receive a new 𝑖-th row in the matrix 𝐴:

(𝑎𝑖1 𝑎𝑖2 𝑎𝑖3 … 𝑎𝑖𝑛) −
𝑎𝑖1
𝑎11

(𝑎11 𝑎12 𝑎13 … 𝑎1𝑛) = (0 𝑎(1)
𝑖2 𝑎(1)

𝑖3 … 𝑎(1)
𝑖𝑛) .

By doing so, we do not alter the solution of the original system, yet we introduced leading
zeros – hence “row reduction” – to all equations below the first one. So after the first step we
have this new equivalent system:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎11 𝑎12 … 𝑎1𝑛

0
0

0

𝑎(1)
22 … 𝑎(1)

2𝑛
𝑎(1)

32 … 𝑎(1)
3𝑛

⋮
𝑎(1)

𝑛2 … 𝑎(1)
𝑛𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⋅

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1
𝑥2
𝑥3
⋮

𝑥𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑏1

𝑏(1)
2

𝑏(1)
3
⋮

𝑏(1)
𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.1)

where 𝑎(1)
𝑖𝑗 = 𝑎𝑖𝑗 − 𝑎1𝑗 ⋅ 𝑎𝑖1/𝑎11, 𝑏(1)

𝑖 = 𝑏𝑖 − 𝑏1 ⋅ 𝑎𝑖1/𝑎11 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. We now repeat this row
reduction in a way that we subtract from the 𝑖-th row the 𝑎(1)

𝑖2 /𝑎(1)
22 -multiple of the second row

for all 3 ≤ 𝑖 ≤ 𝑛. This introduces leading zeros in the second column of row 3 to 𝑛:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎11 𝑎12 𝑎13 … 𝑎1𝑛
0 𝑎(1)

22 𝑎(1)
23 … 𝑎(1)

2𝑛
0 0 𝑎(2)

32 … 𝑎(2)
3𝑛

⋮
0 0 𝑎(2)

𝑛2 … 𝑎(2)
𝑛𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⋅

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1
𝑥2
𝑥3
⋮

𝑥𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑏1
𝑏(1)

2
𝑏(2)

3
⋮

𝑏(2)
𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.2)

We keep doing row reduction and successively eliminate all elements below the diagonal of
thematrix. After the (𝑛−1)-th stepwe therefore obtain a so-called right (upper) triangular matrix,
which is typically denoted by the letter 𝑅. Hence, with 𝑅 = (𝑟𝑖𝑗) we end up with the system

𝑟11 ⋅ 𝑥1 + 𝑟12𝑥2 + ⋯ + 𝑟1𝑛𝑥𝑛 = 𝑏′
1

𝑟22𝑥2 + ⋯ + 𝑟2𝑛𝑥𝑛 = 𝑏′
2

⋮
𝑟𝑛𝑛𝑥𝑛 = 𝑏′

𝑛,

(3.3)

which has a solution space identical to the original system of linear equations. From the last
equation we conclude 𝑥𝑛 = 𝑏′

𝑛/𝑟𝑛𝑛, and we can back-substitute 𝑥𝑛 into the other equations. Now
we can determine 𝑥𝑛−1 and so forth in order to obtain the solution vector (𝑥1, … , 𝑥𝑛). We can
summarize the method of Gaussian elimination as follows:

A system of linear equations with a right triangular matrix is easily solved using
back-substitution andGaussian elimination translates the original system into a right
triangular matrix form.

3.2.2 Pivoting
In the first step of the Gaussian elimination we divided by 𝑎11 and in the subsequent steps we
divided by 𝑎(𝑠−1)

𝑠𝑠 . Of course, this only works if these elements are not zero. If this would be the

3.2. GAUSSIAN ELIMINATION 29

case then at least one the elements below in the same column must be non-zero2 and we can
simply exchange the two rows in order to make 𝑎(𝑠−1)

𝑠𝑠 non-zero.
This procedure is called pivoting and the element 𝑎(𝑠−1)

𝑠𝑠 is called the pivot. Regarding the
numerical condition of the division operation, however, we do not only require 𝑎(𝑠−1)

𝑠𝑠 ≠ 0 but
we want its absolute value to be as large as possible. The reason for this is that the absolute
condition of the operation 𝜑(𝑥) = 𝑎/𝑥 is

𝜅abs =
|𝑎|
𝑥2 ,

which is the smaller the larger 𝑥 is. Hence, in the 𝑠-th step we first look for the largest value of
|𝑎(𝑠−1)

𝑘𝑠 | among |𝑎(𝑠−1)
𝑠𝑠 |, … , |𝑎(𝑠−1)

𝑛𝑠 | and then swap the 𝑠-th and 𝑘-th row.
From a numerical point of viewwe could also swap columns in order to make the pivot even

larger. However, then we would need to do bookkeeping on the column transpositions because
each of them also swaps elements in the solution vector, which have to be undone at the very
end of the Gaussian elimination. We do not go into further details here as Gaussian elimination
is anyhow not the first choice in practice.

However, we would like to mention that the Gaussian elimination can also be used with
singular coefficient matrices 𝐴. The solution space is then either empty (if the system cannot be
solved) or it is an affine-linear subspace of dimension at least zero. When the dimension is zero
then the space consists of a single solution.

3.2.3 Time complexity

In the 𝑠-th row reduction step we modify (𝑛 − 𝑠)2 elements of 𝐴 and (𝑛 − 𝑠) elements of 𝑏. Each
modification involves a constant number of elementary3 operations. Hence, altogether we have

𝑛−1
∑
𝑠=1

(𝑛 − 𝑠)2 + (𝑛 − 𝑠) =
𝑛−1
∑
𝑠=0

𝑠2 + 𝑠 =
(𝑛 − 1)𝑛(2𝑛 − 1)

6⏟⏟⏟⏟⏟⏟⏟⏟⏟
in 𝐴

+
(𝑛 − 1)𝑛

2⏟⏟⏟⏟⏟
in 𝑏

∼
𝑛3

3 (3.4)

modifications, where ∼ means asymptotically equivalent.4 Hence, in 𝑂(𝑛3) time we obtain the
right triangular form.

The back-substitution of 𝑥𝑠 requires us to modify 𝑠 − 1 entries in the vector 𝑏: We keep modi-
fying 𝑏 by plugging in known 𝑥𝑠 in eq. (3.3) on the left-hand side of the equation and subtracting
those terms onto 𝑏 on the right-hand side. That is, for 𝑥𝑛 we have modify 𝑛 − 1 elements of 𝑏,
for 𝑥𝑛−1 we modify 𝑛 − 2 elements in 𝑏, and so on. This is repeated until 𝑏 is the solution vector.
This leads to

𝑛
∑
𝑠=2

(𝑠 − 1) =
𝑛−1
∑
𝑠=1

𝑠 =
(𝑛 − 1)𝑛

2 ∼
𝑛2

2 (3.5)

element modifications of the vector 𝑏 until we have the solution vector 𝑥. Hence, the back-
subsitution takes 𝑂(𝑛2) time. Altogether we can solve 𝐴 ⋅ 𝑥 = 𝑏 in 𝑂(𝑛3) time, which is spent in
asymptotically 𝑛3/3 element modifications, as the row-reduction dominates.

2Otherwise the (𝑠 − 1)-th and the (𝑠 − 2)-th column would be linearly dependent and the original matrix 𝐴 could
not have been regular and det𝐴 = 0.

3An elementary operation – such as add and multiply – can be done in constant time. For instance, a processor has
machine instructions to add and multiply elements.

4The equivalence relation 𝑓 (𝑛) ∼ 𝑔(𝑛) is defined as lim𝑛→∞ 𝑓 (𝑛)/𝑔(𝑛) = 1.

30 CHAPTER 3. SYSTEMS OF LINEAR EQUATIONS

3.2.4 Multiple right-hand sides

From the analysis of the time complexity we learned that the back-substitution takes 𝑂(𝑛2)
time, while the row reduction itself takes 𝑂(𝑛3) time. In some sense, we could perform the
back-substitution a linear number of times without compromising the overall time complexity
of 𝑂(𝑛3). In particular, we could consider 𝑛 right-hand sides 𝑏1, … , 𝑏𝑛 and solve all the systems
𝐴 ⋅ 𝑥 = 𝑏𝑖.

Let us therefore consider 𝑟 right-hand sides 𝑏1, … , 𝑏𝑟 and join them column-wise to a matrix
𝐵 = (𝑏1, … , 𝑏𝑟). We then look for a 𝑛 × 𝑟 matrix 𝑋 that solves

𝐴 ⋅ 𝑋 = 𝐵.

The row reduction and the back-substitution work the same way, we just have to modify all 𝑟
columns of 𝐵 instead of a single column vector 𝑏. Following eq. (3.4) and eq. (3.5) we therefore
have asymptotically

𝑛3

3 + 𝑟
𝑛2

2 + 𝑟
𝑛2

2 =
𝑛3

3 + 𝑟𝑛2 (3.6)

element modifications until we obtain the solution matrix 𝑋. Hence, solving 𝑟 ∈ 𝑂(𝑛) linear
systems with the same coefficient matrix 𝐴 costs the same as solving a single system in terms of
the 𝑂-notation, namely 𝑂(𝑛3) time.

Inverse of a matrix. For the special case where 𝐵 is the identity matrix we obtain a matrix 𝑋
such that 𝐴 ⋅ 𝑋 = 𝐼. This is just the definition of the inverse matrix 𝐴−1 of 𝐴. The Gaussian
elimination can therefore be used to compute the matrix inverse and it requires asymptotically

4
3𝑛3

element modifications, which is in 𝑂(𝑛3), by eq. (3.6). If we look more closely, we can exploit
the fact that 𝐵 contains mostly zeros, which allows for improvements to reduce the number of
operations, but it does not improve the 𝑂(𝑛3) bound. See [21] for details.

3.3 Linear regression

3.3.1 Overdetermined system of equations
In the introduction to this chapter we started with a system of linear equations 𝐴 ⋅ 𝑥 = 𝑏, where
the square matrix 𝐴 was regular. In other words, we had exactly as many equations as variables
and the rank of 𝐴 was maximal, i.e, the rows of 𝐴 were linearly independent.

In this section we study an overdetermined system of linear equations, which possesses more
equations than variables. That is, we consider a system 𝐴 ⋅ 𝑥 = 𝑏 of 𝑚 equations in 𝑛 variables,
where 𝑚 > 𝑛 and 𝐴 is therefore an 𝑚 × 𝑛 matrix. Such a system cannot be solved exactly in
general, which means that there is no 𝑥 ∈ ℝ𝑛 such that 𝐴 ⋅ 𝑥 = 𝑏.

However, we can ask which 𝑥 ∈ ℝ𝑛 minimizes the error ‖𝐴 ⋅ 𝑥 − 𝑏‖. Minimizing ‖𝐴 ⋅ 𝑥 − 𝑏‖ is
equivalent to minimizing ‖𝐴 ⋅ 𝑥 − 𝑏‖2, hence this problem can be rephrased into finding 𝑥 ∈ ℝ𝑛

such that
𝑚

∑
𝑖=1

(𝑎𝑖1𝑥1 + … 𝑎𝑖𝑛𝑥𝑛 − 𝑏𝑖)2

3.3. LINEAR REGRESSION 31

is minimized. This leads to themethod of least squares, which dates back to Carl Friedrich Gauss.
First applications of least squares were in geodesy and astronomy.5 Least squares are a standard
tool in regression analysis, they are a fundamental tool in data fitting6 and often are used as an
introduction into machine learning of linear models.

3.3.2 Normal equations
We are given a real 𝑚×𝑛-matrix 𝐴 and a vector 𝑏 ∈ ℝ𝑚 andwe seek for a 𝑥 ∈ ℝ𝑚 that minimizes
‖𝐴 ⋅ 𝑥 − 𝑏‖. The term 𝐴 ⋅ 𝑥 expresses the transformation of a point 𝑥 ∈ ℝ𝑛 into a point 𝐴 ⋅ 𝑥 ∈ ℝ𝑚

and the set of all such transformed points form im𝐴, the image of 𝐴:

im𝐴 = {𝐴𝑥∶ 𝑥 ∈ ℝ𝑛}.

Note that im𝐴 lives in ℝ𝑚, and from linear algebra we know that it forms in fact a linear
subspace7 of ℝ𝑚. So our goal is now to find a point in im𝐴 that is closest to 𝑏. In case that
𝑏 ∈ im𝐴 then 𝐴 ⋅ 𝑥 = 𝑏 can be solved exactly. In the general case, however, we look for the
orthogonal projection of 𝑏 onto the linear subspace im𝐴 within ℝ𝑚, see fig. 3.1.

ℝ𝑚

𝐴𝑥

𝑏
0 𝐴𝑥 − 𝑏

im𝐴

Figure 3.1: Whenwe orthogonally project 𝑏 onto the linear subspace im𝐴 of ℝ𝑚, we hit a certain
𝐴𝑥 which minimizes ‖𝐴𝑥′ − 𝑏‖ among all 𝑥′ ∈ ℝ𝑛.

Assume that 𝑥 fulfills the property that 𝐴𝑥 is the orthogonal projection of 𝑏 onto im𝐴. Then
any vector in im𝐴 is orthogonal to (𝐴𝑥−𝑏), whichmeans that their inner product is zero. Hence,
for any 𝑥′ ∈ ℝ𝑛 it holds that

(𝐴𝑥′) ⋅ (𝐴𝑥 − 𝑏) = 0.

Let us denote by 𝐴† the transpose of the matrix 𝐴. We recall that (𝐴𝐵)† = 𝐵†𝐴† for matrices 𝐴
and 𝐵, and therefore 𝐴⋅𝑥′ = 𝑥′ ⋅𝐴†, where 𝑥′ first denotes a column vector and then a row vector.
We conclude that for any 𝑥′ ∈ ℝ𝑛

𝑥′ ⋅ 𝐴†(𝐴𝑥 − 𝑏) = 0

This is indeed the case if 𝐴†(𝐴𝑥 − 𝑏) is zero, which means 𝐴†𝐴𝑥 = 𝐴†𝑏. In other words, we
look for a solution 𝑥 of the so-called normal equation system

(𝐴†𝐴) ⋅ 𝑥 = (𝐴†𝑏). (3.7)

Hence, any 𝑥 ∈ ℝ𝑛 that solves eq. (3.7) minimizes ‖𝐴𝑥 − 𝑏‖. In general the solution 𝑥 is not
unique. However, if 𝐴 has maximal rank – so the columns are linearly independent – then it

5In Jan 01, 1801 the asteroid Ceres was discovered and tracked for 40 days, until it vanished behind the sun. It was
the 24-year old Gauss who could predict its future position using least squares, which allowed to relocate Ceres again.

6In fact, for a linear model of data points with Gaussian distributed errors the least square method yields the maxi-
mum likelihood estimator.

7Dt. Untervektorraum

32 CHAPTER 3. SYSTEMS OF LINEAR EQUATIONS

can be shown that 𝐴†𝐴 is regular and the solution 𝑥 is unique. (This follows from rank𝐴 =
rank𝐴†𝐴), see [18] for details.)

Note that if 𝐴 has maximal rank such that 𝐴†𝐴 is regular then we can directly calculate

𝑥 = (𝐴†𝐴)−1𝐴† ⋅ 𝑏 (3.8)

as the “best solution” of the overdetermined system 𝐴𝑥 = 𝑏 in the sense that the error ‖𝐴𝑥 −𝑏‖ is
minimized. Hence, (𝐴†𝐴)−1𝐴† plays the role of an “inverse” of 𝐴 although 𝐴 is not necessarily
regular, not even square. In fact, if 𝐴 has maximal rank then (𝐴†𝐴)−1𝐴† goes by the name pseu-
doinverse or Moore-Penrose inverse8 of 𝐴. The pseudoinverse is closely linked to the singular value
decomposition, see [21] for details.

One of numerous applications of the pseudoinverse is the computation of the inverse of a
Jacobian matrix that arises in the multi-dimensional Newton-Raphson method when searching
for roots of functions. This is, for instance, the basis of a numerical method for the backward
kinematics in robotics. Another example is presented in the following section.

3.3.3 Fitting functions

Linear regression

The term “regression” in linear regression has a historical background: Francis Galton studied the
heights of adults as a function of their parent’s height and found a tendency, namely regression
to the mean. Galton essentially got a plot of points (𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚) ∈ ℝ2 as in fig. 3.2 and
asked for the best fitting linear function.

By “best fitting” we mean that we assume a linear model 𝑓 (𝑥) = 𝑘 ⋅ 𝑥 + 𝑑 for the data and
we want to find the parameters 𝑘, 𝑑 ∈ ℝ such that the (sum of squares) error ∑𝑖(𝑓 (𝑥𝑖) − 𝑦𝑖)2 is
minimized. Phrasing the problem like this makes it compatible with the framework of overde-
termined linear equation systems, namely 𝑓 (𝑥𝑖) = 𝑦𝑖 for all 1 ≤ 𝑖 ≤ 𝑚, or in matrix notion:

⎛⎜⎜⎜⎜
⎝

1 𝑥1
⋮ ⋮
1 𝑥𝑚

⎞⎟⎟⎟⎟
⎠⏟⏟⏟⏟⏟

𝐴

⋅ (𝑑
𝑘) =

⎛⎜⎜⎜⎜
⎝

𝑦1
⋮

𝑦𝑚

⎞⎟⎟⎟⎟
⎠

(3.9)

If not all 𝑥𝑖 are equal then 𝐴 has rank 2, which is maximal, and by virtue of eq. (3.8) we can
directly calculate the parameter vector

(𝑑
𝑘) = (𝐴†𝐴)−1𝐴† ⋅

⎛⎜⎜⎜⎜
⎝

𝑦1
⋮

𝑦𝑚

⎞⎟⎟⎟⎟
⎠

from eq. (3.8) for the function 𝑓 (𝑥) = 𝑘𝑥 + 𝑑 plotted in fig. 3.2. If 𝑚 = 2 and 𝑥1 ≠ 𝑥2 then 𝐴 is
regular. As a consequence (𝐴†𝐴)−1𝐴† = 𝐴−1 and we obtain the one linear function that passes
through the two points. If all 𝑥𝑖 are equal then 𝐴†𝐴 is singular9. Then eq. (3.7) has infinitely
many solutions and there are infinitely many best fitting functions.10

8Note thatwe only considered overdetermined systemshere. However, theMoore-Penrose inverse can also be defined
for underdetermined systems, in fact it uniquely exists for any matrix 𝐴.

9Not regular, not invertible.
10If all 𝑥𝑖 are equal then every best fitting linear function passes through a point (𝑥𝑖, 𝑦), and every linear function that

passes through that point is best fitting as it has the same error. This point (𝑥𝑖, 𝑦) therefore minimizes ∑𝑖(𝑦𝑖 − 𝑦)2,
which gives 𝑦 = 1/𝑚 ∑𝑖 𝑦𝑖. So the point (𝑥𝑖, 𝑦) is the center of gravity of the data points.

3.3. LINEAR REGRESSION 33

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Figure 3.2: Eight data points give rise to an overdetermined linear equation system for a fitting
linear function.

General regression

We can generalize this idea of fitting functions as follows. If we recap eq. (3.9) then we can inter-
pret this equation as follows: We have a linear combination of two base functions, the constant
function 𝑔1(𝑥) = 1 and the function 𝑔2(𝑥) = 𝑥, and we want to find the coefficients 𝑘 and 𝑑 of
this linear combination that minimizes the least square error.

The general idea is to consider 𝑛 base functions 𝑔1, … , 𝑔𝑛 and ask for the linear combination
𝑓 = ∑𝑛

𝑖=1 𝛼𝑖𝑔𝑖 for the data points (𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚) such that the error

𝑚
∑
𝑖=1

(𝑓 (𝑥𝑖) − 𝑦𝑖)2 =
𝑚

∑
𝑖=1

⎛⎜⎜
⎝

𝑛
∑
𝑗=1

𝛼𝑗𝑔𝑗(𝑥𝑖) − 𝑦𝑖
⎞⎟⎟
⎠

2

is minimized. This again is the solution of the overdetermined linear equation system

⎛⎜⎜⎜⎜
⎝

𝑔1(𝑥1) ⋯ 𝑔𝑛(𝑥1)
⋮

𝑔1(𝑥𝑚) ⋯ 𝑔𝑛(𝑥𝑚)

⎞⎟⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴

⋅
⎛⎜⎜⎜⎜
⎝

𝛼1
⋮

𝛼𝑛

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑦1
⋮

𝑦𝑚

⎞⎟⎟⎟⎟
⎠

. (3.10)

The set of linear combinations of the 𝑔𝑖 span a vector space of functions and it makes sense that
the 𝑔𝑖 form a basis11 of this vector space, i.e., they shall be linearly independent. Otherwise the
columns of 𝐴 in eq. (3.10) will not be linearly independent and 𝐴 cannot have maximal rank.

Note that the 𝑔𝑖 do not need to be linear functions. We could choose the base functions
1, sin(𝑥), cos(𝑥), … , sin(𝑛𝑥), cos(𝑛𝑥) and span the vector space of all trigonometric polynomials
up to degree 𝑛. This way we create a conceptional bridge between the Fourier transform and
fitting of functions.

A very practical choice of base functions is 1, 𝑥, 𝑥2, … , 𝑥𝑛 to form polynomials of the form
∑𝑛

𝑖=0 𝛼𝑖𝑥𝑖. We call this polynomial regression. These base functions span the vector space of poly-
nomial functions up to degree 𝑛. In this case eq. (3.10) yields

⎛⎜⎜⎜⎜
⎝

1 𝑥1 𝑥2
1 ⋯ 𝑥𝑛

1
⋮

1 𝑥𝑚 𝑥2
𝑚 ⋯ 𝑥𝑛

𝑚

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

𝛼0
⋮

𝛼𝑛

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑦1
⋮

𝑦𝑚

⎞⎟⎟⎟⎟
⎠

. (3.11)

11The vectors 𝑣1, … , 𝑣𝑑 of a vector space 𝑉 (of finite dimension) form a basis if they span 𝑉 – the set of linear combina-
tions fills 𝑉 out – and they are linearly independent. So a basis is a smallest set of linearly independent vectors that span
𝑉. Every basis of 𝑉 has the same number of elements, which is called the dimension of 𝑣. Also functions can form vector
spaces, e.g., the set of functions ℝ → ℝ forms a vector space 𝑉, where (𝑓 + 𝑔)(𝑥) = 𝑓 (𝑥) + 𝑔(𝑥) and (𝜆𝑓)(𝑥) = 𝜆 ⋅ 𝑓 (𝑥)
for all 𝑓 , 𝑔 ∈ 𝑉 and 𝜆 ∈ ℝ.

34 CHAPTER 3. SYSTEMS OF LINEAR EQUATIONS

−3 −2 −1 0 1 2 3

−1

0

1

−3 −2 −1 0 1 2 3

−1

0

1

Figure 3.3: Polynomial fit of data points that sample tanh at 20 uniformly random points on
[−3, 3]. Left: The polynomial of degree 3. Right: The polynomial of degree 5.

and the solution leads to the best approximating polynomial function up to degree 𝑛. The initial
example of fitting a linear function is a polynomial fit with 𝑛 = 1, see eq. (3.9) versus eq. (3.11).
In fig. 3.3 two examples of approximating polynomials are given. They have both been computed
by eq. (3.8) applied to eq. (3.11).

Software packages like numpy for Python or MATLAB provide library functions that imple-
ment least square polynomial fit. The following lines are from a Python interpreter shell:

>>> import numpy as np
>>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
>>> z = np.polyfit(x, y, 3)
>>> z
array([0.08703704, -0.81349206, 1.69312169, -0.03968254])
>>> print(np.poly1d(z))

3 2
0.08704 x - 0.8135 x + 1.693 x - 0.03968

Supervised learning

In an even more generalized setting we and end up in supervised machine learning. We are given
a training set of inputs 𝑥𝑖 ∈ ℝ𝑛 and desired outputs 𝑦𝑖 ∈ ℝ𝑛, which are sometimes called labels.

We want to model the relationship between the input and the output by certain functions
𝑓 ∶ ℝ𝑛 → ℝ𝑚, such as feed-forward neural nets. We describe this function 𝑓 through a list of
parameters 𝜃, like the weights in the neural net. That is, we consider a whole family of models
𝑓𝜃 and look for the parameters 𝜃 that yield the model that describes the data best. In machine
learning, the error is called loss and often denoted by ℓ. A common choice is the 2-norm

ℓ = ∑
𝑖

(𝑦𝑖 − 𝑓𝜃(𝑥𝑖))2.

We now look for the parameters 𝜃 that minimize the loss ℓ. However, interesting families of
models are too complex such that we can directly compute the optimum via theMoore-Prenrose
inverse. Instead, numerical optimization is applied, such as stochastic gradient descent (SGD) or
adaptive versions of it, like Adam or AMSGrad. This is called training in machine learning.

3.3. LINEAR REGRESSION 35

3.3.4 QR decomposition
The QR decomposition is a method that can solve regular linear equation systems and overde-
termined linear equation systems. It can be shown that the condition of the QR decomposition is
significantly better than the one of the normal equations. It also introduces less rounding errors
than Gaussian elimination.

We again consider a linear equation system 𝐴𝑥 = 𝑏 with a 𝑚 × 𝑛 matrix 𝐴, where 𝑚 ≥ 𝑛. It
can be shown that there is always an 𝑚 × 𝑚 orthogonal matrix 𝑄 such that

𝑄𝐴 = (𝑅
0) , (3.12)

where 𝑅 is a 𝑛 × 𝑛 right triangular matrix and 0 is a (𝑚 − 𝑛) × 𝑛 zero matrix.
Recall that a square matrix is called orthogonal if its columns are orthogonal unit vectors,

i.e., they form a orthonormal basis of the ℝ𝑚. From that it follows that 𝑄†𝑄 = 𝑄𝑄† = 𝐼 which
means that 𝑄 can be trivially inverted as 𝑄† = 𝑄−1. An orthogonal matrix 𝑄 also has the nice
property that it does not change the length of vectors, i.e., ‖𝑄𝑥‖ = ‖𝑥‖. In some sense, 𝑄 is only
performing combinations of rotations and reflections.

The question is now how to solve 𝐴 ⋅ 𝑥 = 𝑏 given the above QR decomposition, i.e., what 𝑥
is minimizing ‖𝐴 ⋅ 𝑥 − 𝑏‖? Note that 𝑄 does not change lengths of vectors, so we can actually
minimize ‖𝑄𝐴 ⋅ 𝑥 − 𝑄𝑏‖ instead. Assume we know 𝑄 then we can also compute

𝑄𝑏 = (𝑐
𝑑)

with a vector 𝑐 ∈ ℝ𝑛 and 𝑑 ∈ ℝ𝑚−𝑛. Now we observe that for any 𝑥 ∈ ℝ𝑛

‖𝐴𝑥 − 𝑏‖2 = ‖𝑄(𝐴𝑥 − 𝑏)‖2 = ‖𝑄𝐴𝑥 − 𝑄𝑏‖2 = ∥∥∥∥
(𝑅𝑥 − 𝑐

−𝑑)∥∥∥∥

2
= ‖𝑅𝑥 − 𝑐‖2 + ‖𝑑‖2 ≥ ‖𝑑‖2. (3.13)

Hence, the left-hand side is minimized exactly when 𝑅𝑥 = 𝑐. We therefore look for the solution
𝑥 of 𝑅𝑥 = 𝑐 to minimize ‖𝐴𝑥 − 𝑏‖. Now remember that 𝑅 is an right triangular matrix and hence
𝑅𝑥 = 𝑐 is easy to solve via back substitution. This method is called QR method because 𝐴 can be
expressed as

𝐴 = 𝑄† (𝑅
0) . (3.14)

The essential step in the 𝑄𝑅 method is the computation of the matrix 𝑄. A numerically
stable algorithm to compute 𝑄 is based on so-calledHouseholder reflections. Reflectionmatrices
𝑄1, … , 𝑄𝑛 are applied to 𝐴 in a way such that the 𝑄𝑘 basically generates the 𝑘-th column of the
right-hand side in eq. (3.12). The product 𝑄𝑛 ⋯ 𝑄1 is then 𝑄 in eq. (3.12). The other algorithm
uses so-called Givens rotations rather than Housholder reflections.

Software packages like numpy for Python or MATLAB provide library functions that imple-
ment QR decomposition. The following lines are from a Python interpreter shell. (Note that
np.linalg.qr() returns the two factors in the right-hand side of eq. (3.14).)

>>> import numpy as np
>>> A = np.random.randn(9, 6) # Random 9x6 matrix
>>> Q, R = np.linalg.qr(A)
>>> np.linalg.norm(A - Q @ R) <= 1e-14 # A == QR
True

36 CHAPTER 3. SYSTEMS OF LINEAR EQUATIONS

Besides the QR decomposition there are a couple of other common matrix decompositions.
For instance, any square matrix 𝐴 admits an LU decomposition

𝐴 = 𝑃 ⋅ 𝐿 ⋅ 𝑈,

where 𝑃 is a permutation matrix, 𝐿 is a left (lower) triangular matrix and 𝑈 is an upper (right)
triangular matrix. This decomposition is typically used to solve regular linear equation systems,
like the function np.linalg.solve() does in numpy. In MATLAB the function linsolv() uses LU
decomposition if the coefficient matrix 𝐴 is square and QR decomposition in all other cases.

3.3.5 Equilibration and regularization
In the row reduction steps of the Gaussian elimination method we multiplied single equations
without changing the set of solutions. The solution of an overdetermined system of equations,
however, is only an approximate solution that minimizes the least square error. Hence, if we
scale a single equation then we change the expression for the error and we obtain a different
solution.

More precisely, let 𝐴 ⋅ 𝑥 = 𝑏 denote an overdetermined system and let 𝑥 be a solution. We
learned from section 3.3.1 that 𝑥 therefore minimizes the error expression

‖𝐴𝑥 − 𝑏‖2 =
𝑚

∑
𝑖=1

⎛⎜⎜
⎝

𝑛
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑗 − 𝑏𝑖
⎞⎟⎟
⎠

2

,

where 𝐴 = (𝑎𝑖𝑗) and 𝑏 = (𝑏𝑖). Assume now that we multiply the 𝑘-th equation by a factor 𝜆 ≠ 0.
We therefore obtain a new matrix 𝐴′ = (𝑎′

𝑖𝑗) and a new right-hand side 𝑏′
𝑖 with

𝑎′
𝑖𝑗 =

⎧{
⎨{⎩

𝑎𝑖𝑗 for 𝑖 ≠ 𝑘
𝜆𝑎𝑖𝑗 for 𝑖 = 𝑘

and 𝑏′
𝑖 =

⎧{
⎨{⎩

𝑏𝑖 for 𝑖 ≠ 𝑘
𝜆𝑏𝑖 for 𝑖 = 𝑘

.

The solution 𝑥′ to this new system now minimizes the error expression

∑
𝑖≠𝑘

⎛⎜⎜
⎝

∑
𝑗

𝑎𝑖𝑗𝑥𝑗 − 𝑏𝑖
⎞⎟⎟
⎠

2

+ 𝜆2 ⎛⎜⎜
⎝

∑
𝑗

𝑎𝑘𝑗𝑥𝑗 − 𝑏𝑘
⎞⎟⎟
⎠

2

.

In other words, the solution 𝑥′ now puts a weight 𝜆 on the 𝑘-th equation for the error minimiza-
tion. By adjusting 𝜆 we can control how important or significant an equation is to us.

Equilibration. Assume that we actually have 𝑚 = 𝑚1 + 𝑚2 equations in our system, where the
first 𝑚1 equations stem from a certain objective to be optimized and a second set of 𝑚2 equations
that stem from a different objective. Assume that both objectives are equally important to us,
but 𝑚1 ≠ 𝑚2. We scale the first 𝑚1 equations by 1/𝑚1 and the others by 1/𝑚2 such that the sum of
weights for the equations of each objective is 1, which results in the error expression

1
𝑚1

𝑚1

∑
𝑖=1

⎛⎜⎜
⎝

∑
𝑗

𝑎𝑖𝑗𝑥𝑗 − 𝑏𝑖
⎞⎟⎟
⎠

2

+
1

𝑚2

𝑚1+𝑚2

∑
𝑖=𝑚1+1

⎛⎜⎜
⎝

∑
𝑗

𝑎𝑖𝑗𝑥𝑗 − 𝑏𝑖
⎞⎟⎟
⎠

2

.

Equilibration is the method of scaling equations in a way to equilibrate their weight. Depend-
ing on the problem we may, for instance, scale the equations such that the coefficient vectors
(𝑎𝑘1, … , 𝑎𝑘𝑛) are all of equal length for 1 ≤ 𝑘 ≤ 𝑚. This way all equations obtain a kind of “unit
weight”.

3.3. LINEAR REGRESSION 37

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Figure 3.4: The polynomial of degree 6 fitting 8 data points shows strong oscillations.

Regularization. For certain systems the solution may not “behave very well”. Consider for
instance the polynomoial of degree 6 that is shown in fig. 3.4 and fits the point set from fig. 3.2.
What we see is the typical behavior of polynomials of higher degree: They have a strong ten-
dency to oscillate significantly.

In order to counteract against this effect we can “penalize” the oscillation behavior by extend-
ing the error term accordingly. By “oscillation” we actually mean high curvature and in fact the
strain energy of a function 𝑓 ∶ ℝ → ℝ in the interval [𝑎, 𝑏] is given by

∫
𝑏

𝑎
𝑓 ″(𝑥)2 d𝑥, (3.15)

which we could interpret as the infinitesimal sum (integral) of the square error of the curvature
(second derivative). We have a polynomial 𝑓 (𝑥) = ∑𝑛

𝑖=1 𝛼𝑖𝑥𝑖 whose second derivative is

𝑓 ″(𝑥) =
𝑛

∑
𝑖=2

𝛼𝑖𝑥𝑖−2 ⋅ 𝑖(𝑖 − 1) (3.16)

We would like to minimize the error term given in eq. (3.15) for the 𝛼𝑘, so we set the partial
derivatives to zero. We see from eq. (3.16) that 𝛼0, 𝛼1 actually do not matter so we only consider
the 𝑛 − 1 equations for 𝛼2, … , 𝛼𝑛:

0 = 𝜕
𝜕𝛼𝑘

∫
𝑏

𝑎
⎛⎜
⎝

𝑛
∑
𝑖=2

𝛼𝑖𝑥𝑖−2 ⋅ 𝑖(𝑖 − 1)⎞⎟
⎠

2

d𝑥

= ∫
𝑏

𝑎
2 ⋅ ⎛⎜

⎝

𝑛
∑
𝑖=2

𝛼𝑖𝑥𝑖−2 ⋅ 𝑖(𝑖 − 1)⎞⎟
⎠

𝑥𝑘−2 ⋅ 𝑘(𝑘 − 1) d𝑥

= 2 ⋅
𝑛

∑
𝑖=2

𝛼𝑖 ⋅ 𝑖𝑘(𝑖 − 1)(𝑘 − 1) ⋅ ∫
𝑏

𝑎
𝑥𝑖+𝑘−4 d𝑥

= 2 ⋅
𝑛

∑
𝑖=2

𝛼𝑖 ⋅ 𝑖𝑘(𝑖 − 1)(𝑘 − 1)
𝑏𝑖+𝑘−3 − 𝑎𝑖+𝑘−3

𝑖 + 𝑘 − 3

We end up with a system of 𝑛 − 1 linear equations

(𝑐𝑘𝑖) ⋅ (𝛼𝑖) = 0 where 𝑐𝑘𝑖 =
⎧{
⎨{⎩

0 for 𝑖 ≤ 2
𝑖𝑘(𝑖 − 1)(𝑘 − 1) 𝑏𝑖+𝑘−3−𝑎𝑖+𝑘−3

𝑖+𝑘−3 for 𝑖 > 2
(3.17)

and 𝑘 ranging from 2 to 𝑛. Here (𝑐𝑘𝑖) and (𝛼𝑖) denote matrices and vectors, respectively.

38 CHAPTER 3. SYSTEMS OF LINEAR EQUATIONS

However, we want to control the amount of this penalty and therefore we weight them by a
weight 𝜆 > 0. Together with the original system of eq. (3.11) for the approximation of the data
points, we end up with the following system:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 𝑥1 𝑥2
1 … 𝑥𝑛

1
⋮

1 𝑥𝑚 𝑥2
𝑚 … 𝑥𝑛

𝑚

0 0 𝜆𝑐22 … 𝜆𝑐2𝑛
⋮

0 0 𝜆𝑐𝑛2 … 𝜆𝑐𝑛𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

𝛼0
⋮

𝛼𝑛

⎞⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑦1
⋮

𝑦𝑚

0
⋮
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.18)

The first 𝑚 equations stem from the approximation task of the data points and the next 𝑛 − 1
equations stem from the curvature penalty. The error term minimized by the entire system is

𝑚
∑
𝑘=1

(𝑓 (𝑥) − 𝑦𝑖)2 + 𝜆2 ∫
𝑏

𝑎
𝑓 ″(𝑥)2 d𝑥.

If we choose 𝜆 > 0 then the solution becomesmore regular in the sense of “well-behaved”. There-
fore we call 𝜆2 ∫𝑏

𝑎 𝑓 ″(𝑥)2 d𝑥 the regularization term and the method is called regularization. If we
choose 𝜆 = 0 then we have the original non-regularized version, see fig. 3.5 for an example. Of
course, increasing 𝜆 reduces the amount of oscillation at the expense of an increased approxima-
tion error. Furthermore, we would like to combine this regularization with equilibration, such
that the effect of parameter 𝜆 becomes somewhat independent of 𝑚.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Figure 3.5: Regularized solution for a polynomial of degree 6 as in fig. 3.4. The black graph
shows the result for 𝜆 = 0.001 and the gray graph for 𝜆 = 0, which equals therefore the non-
regularized version. The strain energy is computed over the interval [0, 1].

Regularizing training of neural nets. Similar ideas to equilibration and regularization is ap-
plied when training neural nets. In particular deep neural nets possess manymodel parameters,
which are to be trained through gradient descent optimization, see section 3.3.3.

This gives those nets a high learning capacity but they are also prone to overfitting leading
to exactly the behavior as illustrated in fig. 3.4. This oscillating behavior hurts the generalization
capability of the neural net, because similar input leads to strongly different output.

To mitigate overfitting (and to stabilize gradient descent training), a standard technique is
to add 𝐿1- or 𝐿2-regularization: It causes a normalization of the weight vectors formed by the
weights of neurons. This is similar to normalizing the coefficient vectors as described above for
equilibration and causes a smoothed behavior as illustrated for regularization in fig. 3.5.

Chapter4
Polynomial interpolation

4.1 Motivation

We often face the situation, where a function 𝑓 is not given by a closed expression, but at finitely
many positions 𝑥1, … , 𝑥𝑛 and we want to evaluate 𝑓 at arbitrary positions 𝑥. In engineering the
pairs (𝑥𝑖, 𝑓 (𝑥𝑖)) often stem frommeasurements. A typical approach to this task is to approximate
𝑓 by a polynomial 𝑝 with 𝑝(𝑥𝑖) = 𝑓 (𝑥𝑖) for all 1 ≤ 𝑖 ≤ 𝑛 and evaluate 𝑝(𝑥) as an approximation for
𝑓 (𝑥). The 𝑥𝑖 are called (interpolation) nodes1. Typically 𝑥 is in the interval between the smallest
and the largest node. If 𝑥 is outside this interval then we also speak of an extrapolation.

But interpolation is not only useful when the input stems from measurements: Consider a
parallel curve (of small distance) to the function graph of 𝑥2. This curve is again the function
graph of a function 𝑓, for which it might be difficult to find a simple expression, but we can
approximate it using a finite number of samples. Strictly speaking, if we can choose the interpo-
lation points then we actually speak of function approximation rather than interpolation.

Let us further assume that we now would like to integrate of differentiate a function 𝑓. Even
if 𝑓 is given by as a closed expression, integration or differentiation might be difficult. After
all, there is for instance no elementary function for the integral of 𝑒−𝑥2. The integration and
differentiation of polynomials is easy, so we could again approximate 𝑓 by a polynomial and
integrate or differentiate the polynomial instead. Interpolation is therefore also the basis for
further numerical methods and the question arises what error is introduced by the polynomial
approximation. In general, numerical computation is much easier than symbolic computation.

Instead of polynomials we could also use other simple and versatile functions for interpola-
tion, like linear combinations of trigonometric functions. Herewe restrict ourselves to polynomi-
als. After all, the Stone-Weierstrass approximation theorem says that every continuous function
defined on a closed interval [𝑎, 𝑏] actually can be (uniformly) approximated by polynomials,
which is all but clear.2

4.2 Power series

Polynomials play an important role for approximation because they are able to represent an
import class of functions. A function 𝑓 ∶ ℝ → ℝ is called analytic on the open set 𝐷 ⊆ ℝ if it can

1Dt. Stützstelle
2More precisely, let 𝑓 ∶ [𝑎, 𝑏] → ℝ be continuous and let 𝜀 > 0 be arbitrarily small. Then there is a polynomial function

𝑝 such that ‖𝑓 −𝑝‖ < 𝜀, where ‖.‖ denotes the supremumnorm. Put inwords of topology: The set of polynomial functions
is dense in the set of continuous functions over [𝑎, 𝑏].

39

40 CHAPTER 4. POLYNOMIAL INTERPOLATION

be represented by a power series3

𝑓 (𝑥) =
∞
∑
𝑘=0

𝑎𝑘(𝑥 − 𝑥0)𝑘, (4.1)

such that 𝑥0 can be chosen arbitrarily from 𝐷. All elementary functions are analytic on ℝ: Poly-
nomials, exponential function, logarithms, and the trigonometric functions. Sums, products and
compositions of analytic functions are again analytic.

The Taylor series tells us how to obtain the coefficients 𝑎𝑛 in eq. (4.1):

𝑓 (𝑥) =
∞
∑
𝑘=0

𝑓 (𝑘)(𝑥0)
𝑘! (𝑥 − 𝑥0)𝑘.

Hence, analytic functions have this incredible property that if we know all derivatives at a single
location 𝑥0 then we globally know the function at any 𝑥 in the domain.

Not all processors provide machine instructions for the exponential, logarithmic or trigono-
metric functions. But even if they do, theymight be inaccurate orwewould like to trade accuracy
versus speed. Or maybe we would like to implement these functions in an FPGA using addition
andmultiplication only. In such cases, Taylor series are a commonmethod to approximate these
functions by just using the first 𝑛 summands. For instance

exp(𝑥) ≈
𝑛

∑
𝑘=0

𝑥𝑘

𝑘! and sin(𝑥) ≈
𝑛

∑
𝑘=0

(−1)𝑘 𝑥2𝑘+1

(2𝑘 + 1)! .

Even sin(𝑥) ≈ 𝑥 is accurate up to a relative error of 1% in the interval [−0.25, 0.25].

4.3 Single interpolation polynomials

4.3.1 Existence
A polynomial of degree 𝑛 − 1 can exactly interpolate 𝑛 points. More precisely, let 𝑥1, … , 𝑥𝑛
be pairwise distinct real numbers and let 𝑦1, … , 𝑦𝑛 be real numbers. Then there is exactly one
polynomial 𝑝 of degree at most 𝑛 − 1 such that

𝑝(𝑥𝑖) = 𝑦𝑖 (4.2)

for all 1 ≤ 𝑖 ≤ 𝑛. In particular, a constant function (polynomial of degree 0) can interpolate one
point, a linear function (polynomial of degree 1) can interpolate two points, and so on. We can
compute 𝑝 by considering the linear equation system behind eq. (4.2), namely

⎛⎜⎜⎜⎜
⎝

1 𝑥1 … 𝑥𝑛−1
1

⋮
1 𝑥𝑛 … 𝑥𝑛−1

𝑛

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

𝑎0
⋮

𝑎𝑛−1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑦1
⋮

𝑦𝑛

⎞⎟⎟⎟⎟
⎠

, (4.3)

where 𝑝(𝑥) = ∑𝑛−1
𝑘=0 𝑎𝑘𝑥𝑘. The coefficient matrix is regular if its determinate is nonzero. This

determinate is knows as the Vandermonde determinant. It has the value

∏
1≤𝑖<𝑘≤𝑛

(𝑥𝑘 − 𝑥𝑖)

and is non-zero for pairwise distinct 𝑥𝑖. We call the 𝑥𝑖 the nodes and the unique 𝑝 the interpolation
polynomial.

3Dt. Potenzreihe

4.3. SINGLE INTERPOLATION POLYNOMIALS 41

4.3.2 Interpolation error
Let us consider a function 𝑓 ∶ 𝐼 → ℝ on an interval 𝐼 = [𝑎, 𝑏] and pairwise distinct interpolation
nodes 𝑥1, … , 𝑥𝑛. We know that there is a unique interpolation polynomial 𝑝 of degree at most
𝑛 − 1 such that 𝑝(𝑥𝑖) = 𝑓 (𝑥𝑖) for all 1 ≤ 𝑖 ≤ 𝑛. But what can we say about the error, i.e., the
difference 𝑓 (𝑥) − 𝑝(𝑥) for 𝑥 ∈ 𝐼?

First, we define by ‖𝑓 ‖ the maximum norm of 𝑓 as

‖𝑓 ‖ = max
𝑥∈𝐼

|𝑓 (𝑥)|.

Next we define the node polynomial 𝑤 by

𝑤(𝑥) =
𝑛

∏
𝑖=1

(𝑥 − 𝑥𝑖).

It can be shown that for any 𝑥 there is some 𝜉 ∈ 𝐼 such that

𝑓 (𝑥) − 𝑝(𝑥) =
𝑓 (𝑛)(𝜉)

𝑛! ⋅ 𝑤(𝑥) (4.4)

for all 𝑥 ∈ 𝐼. Even if we do not know how to compute 𝜉, we can conclude that

‖𝑓 − 𝑝‖ ≤
1
𝑛! ‖𝑓 (𝑛)‖ ‖𝑤‖. (4.5)

The left-hand side of eq. (4.5) is themaximum interpolation error on 𝐼, which ismax𝑥∈𝐼 |𝑓 (𝑥)−
𝑝(𝑥)|. This term is bound by the right-hand side, which is small if ‖𝑤‖ is small. If we can choose
the interpolation nodes 𝑥𝑖 then we can choose them in a clever way such that ‖𝑤‖ becomes small.
If we choose the interpolation nodes uniformly on our interval 𝐼 then 𝑤(𝑥) tends to become large
at the boundary of 𝐼, see fig. 4.1. More precisely, the extreme values of 𝑤 get larger towards the
boundary of 𝐼. This is known as Runge’s phenomenon.

If we, however, redistribute the nodes to increase the density of the nodes towards the bound-
ary of 𝐼 then the extreme values of 𝑤 get balanced. In fact, it can be shown that setting

𝑥𝑖 = cos
2𝑖 − 1

2𝑛 𝜋 (4.6)

makes the extreme values of 𝑤 all equal, namely 1/2𝑛−1, which in this sense is optimal for a poly-
nomial interpolation on 𝐼 = [−1, 1], see fig. 4.1. The nodes given by eq. (4.6) are calledChebyshev
nodes and they are the roots of the so-called Chebyschev polynomial of 𝑛-th degree. If we insert
this into eq. (4.5), for Chebyshev nodes we therefore get an error bound of

‖𝑓 − 𝑝‖ ≤
‖𝑓 (𝑛)‖

𝑛! 2𝑛−1 . (4.7)

In general, increasing the number 𝑛 of nodes has only limited effect in improving the in-
terpolation error. The reason is that polynomials of higher degree have a strong tendency for
oscillation, as we already observed in fig. 3.4 in chapter 3. In fig. 4.2 an interpolation polynomial
is shown that also illustrates this behavior.

In fact, it can happen that the interpolation error does not converge to zero when we increase
𝑛 towards infinity. The reason is that in eq. (4.5) the term ‖𝑓 (𝑛)‖ can grow towards ∞ faster than
‖𝑤‖/𝑛! goes to zero.

42 CHAPTER 4. POLYNOMIAL INTERPOLATION

−1 −0.5 0.5 1

−0.06

−0.03

0.03

−1 −0.5 0.5 1

−0.06

−0.03

0.03

−1 −0.5 0.5 1

−0.02

−0.01

0.01

0.02

−1 −0.5 0.5 1

−0.02

−0.01

0.01

0.02

Figure 4.1: The node polynomial 𝑤(𝑥). Top: Polynomials of degree 6. Bottom: Polynomials of
degree 9. Left: Uniform nodes on [−1, 1]. Right: Chebyshev nodes.

−3 −2 −1 0 1 2 3

−1

0

1

Figure 4.2: An interpolation polynomial of degree 6 that shows typical oscillation behavior.

4.3.3 Computing interpolation polynomials
In this section, we will introduce two different methods to compute interpolation polynomials:
Lagrange’s formulas and the Neville tableau. Of course, it would be possible to compute the
interpolation polynomial by solving the linear system in eq. (4.3), but we can in fact compute
them directly without paying the costs of solving a linear system of equations.

Lagrange’s formula

We want to find a polynomial 𝑝 of degree 𝑛 − 1 with 𝑝(𝑥𝑘) = 𝑦𝑘 for all 1 ≤ 𝑘 ≤ 𝑛. The idea is
now that we construct for each such 𝑘 a polynomial 𝐿𝑘 of degree 𝑛 − 1 that is 1 at 𝑥𝑘, but 0 at all
other nodes, i.e., 𝐿𝑘(𝑥𝑖) = 𝛿𝑖𝑘. This directly leads to the sought interpolation polynomial

𝑝(𝑥) =
𝑛

∑
𝑘=1

𝑦𝑘𝐿𝑘(𝑥), (4.8)

4.3. SINGLE INTERPOLATION POLYNOMIALS 43

because

𝑝(𝑥𝑖) =
𝑛

∑
𝑘=1

𝑦𝑘𝛿𝑖𝑘 = 𝑦𝑖𝛿𝑖𝑖 = 𝑦𝑖.

The polynomials 𝐿𝑘 are called Lagrange polynomials of degree 𝑛 and the property 𝐿𝑘(𝑥𝑖) = 𝛿𝑖𝑘
is easily checked for their definition:

𝐿𝑘(𝑥) =
𝑛

∏
𝑖=1
𝑖≠𝑘

𝑥 − 𝑥𝑖
𝑥𝑘 − 𝑥𝑖

. (4.9)

Plugging everything together gives Lagrange’s formula for the interpolation polynomial:

𝑝(𝑥) =
𝑛

∑
𝑘=1

𝑛
∏
𝑖=1
𝑖≠𝑘

𝑥 − 𝑥𝑖
𝑥𝑘 − 𝑥𝑖

𝑦𝑘.

Neville tableau

The Lagrange formula is easy to understand, but the following Neville algorithm is better suited
for implementation. In particular, it allows to give an error estimate of the result, see [21] for
details. It follows the classical approaches of divide and conquer and dynamic programming for
algorithm design: We solve the same problem for smaller instances first and then plug the sub-
results together to form the solution of larger instances.

More precisely, we start with interpolation polynomials 𝑇𝑖(𝑥) = 𝑦𝑖 of degree 0 that only
interpolate a single node 𝑦𝑖. We then combine them in a way to form polynomials 𝑇𝑖,𝑖+1 of
degree 1 that interpolate two nodes 𝑥𝑖, 𝑥𝑖+1, and so on. In general, 𝑇𝑖,…,𝑘 interpolates 𝑥𝑖, … , 𝑥𝑘
and eventually we obtain 𝑇1,…,𝑛 that interpolates all nodes 𝑥1, … , 𝑥𝑛. We end up with a tableau
of this form:

𝑇1 𝑇2 𝑇3 … 𝑇𝑛

𝑇12 𝑇23 … 𝑇𝑛−1,𝑛

𝑇123 … 𝑇𝑛−2,𝑛−1,𝑛

⋱ ⋱

𝑇1,…,𝑛

Each element is recursively defined by its two ancestors above, except for the first row:

𝑇𝑖(𝑥) = 𝑦𝑖 (4.10)

𝑇𝑖,…,𝑖+𝑚(𝑥) =
(𝑥 − 𝑥𝑖+𝑚)𝑇𝑖,…,𝑖+𝑚−1(𝑥) + (𝑥𝑖 − 𝑥)𝑇𝑖+1,…,𝑖+𝑚(𝑥)

𝑥𝑖 − 𝑥𝑖+𝑚
. (4.11)

Plainly implementing this recursion leads to many re-computations of the same sub-results,
i.e., 𝑇2, is reached in multiple ways in the above tableau. A standard technique of dynamic

44 CHAPTER 4. POLYNOMIAL INTERPOLATION

programming is memoization: We remember the sub-results instead of re-computing them. This
makes the total effort proportional to the size of the tableau.

Note that in the above recursion each 𝑇𝑖,…,𝑖+𝑚 results from a linear interpolation of the two
ancestors 𝑇𝑖,…,𝑖+𝑚−1 and 𝑇𝑖+1,…,𝑖+𝑚. In particular, the elements 𝑇𝑖,𝑖+1 in the second row form a
linear interpolation between 𝑦𝑖 and 𝑦𝑖+1:

𝑇𝑖,𝑖+1 =
(𝑥 − 𝑥𝑖+1)𝑦𝑖 + (𝑥𝑖 − 𝑥)𝑦𝑖+1

𝑥𝑖 − 𝑥𝑖+1
(4.12)

The first row in the tableau, 𝑇1, … , 𝑇𝑛, does not need to be in any particular order. We could
also easily add a new interpolation node and update the tableauwithout recomputing it entirely.
We just add a new (diagonal) column in the tableau. Sometimes it therefore makes sense to sort
the 𝑇1, … , 𝑇𝑛 in increasing distance to the position 𝑥 and keep adding interpolation points until
the changes drop below a certain threshold, instead of computing the entire final tableau.

4.4 Splines

4.4.1 Motivation

We learned in section 4.3 that polynomials of high degree tend to oscillate, as illustrated in
fig. 4.2. For certain applications we could, of course, use a piecewise linear function that in-
terpolates between the points. So let 𝑥1 < ⋯ < 𝑥𝑛 denote 𝑛 nodes with function values 𝑦1, … , 𝑦𝑛.
As illustrated in fig. 4.3a, for each 1 ≤ 𝑖 ≤ 𝑛 − 1 we put a linear functions 𝑝𝑖 on the interval
[𝑥𝑖, 𝑥𝑖+1] that linearly interpolates between the nodes 𝑥𝑖 and 𝑥𝑖+1:

𝑝𝑖(𝑥) = 𝜆 𝑦𝑖 + 𝜇 𝑦𝑖+1 with 𝜆 =
𝑥 − 𝑥𝑖+1
𝑥𝑖 − 𝑥𝑖+1

and 𝜇 = 1 − 𝜆 =
𝑥𝑖 − 𝑥

𝑥𝑖 − 𝑥𝑖+1
.

These are exactly the polynomials 𝑇𝑖,𝑖+1 of the first row in the Neville tableau, see also eq. (4.12).
Many applications, however, require an interpolation function that is at least twice differen-

tiable, in particular for applications in physics and engineering. For instance, a co-called cam
profile tells how a secondary servo drive (slave axis) should move in dependence of a first servo
drive (master axis). A cam profile therefore maps one position to another and they are often
given in tabulated form (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) such that we have to compute an interpolation. The
second derivative 𝑓 ″ of the interpolating function 𝑓 relates4 to the acceleration, which must be
finite.

The idea is to generalize piecewise linear functions to piecewise polynomial functions that
fulfill certain additional properties, like being twice differentiable. Such functions are called
splines. In this sense, a piecewise linear function is a spline of degree 1. A step function (piece-
wise constant) would be a spline of degree 0. By far the most common variant, however, is the
cubic spline, which is of degree 3.

4.4.2 Cubic splines

By a cubic spline 𝑓 we mean a twice continuously differentiable spline of degree three that inter-
polates a tabulated function (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛). That is, the second derivative of a cubic spline

4If the master axis moves at unit speed then the second derivative is exactly the acceleration of the slave axis.

4.4. SPLINES 45

−2 0 2

−1

0

1

(a) Piecewise linear function

−2 0 2

−1

0

1

(b) Natural cubic spline

Figure 4.3: Spline interpolation of the points in fig. 4.2. The dashed line is the interpolation
polynomial of degree six. Left: A piecewise linear function (spline of degree 1). Right: The
natural cubic spline.

exists and it is continuous.5 Assuming 𝑥1 < ⋯ < 𝑥𝑛, we therefore have these conditions on the
polynomial pieces 𝑝𝑖 over the intervals [𝑥𝑖, 𝑥𝑖+1]:

𝑝𝑖(𝑥𝑖) = 𝑦𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 − 1
𝑝𝑛−1(𝑥𝑛) = 𝑦𝑛
𝑝𝑖(𝑥𝑖+1) = 𝑝𝑖+1(𝑥𝑖+1) for all 1 ≤ 𝑖 ≤ 𝑛 − 2
𝑝′

𝑖(𝑥𝑖+1) = 𝑝′
𝑖+1(𝑥𝑖+1) for all 1 ≤ 𝑖 ≤ 𝑛 − 2

𝑝″
𝑖 (𝑥𝑖+1) = 𝑝″

𝑖+1(𝑥𝑖+1) for all 1 ≤ 𝑖 ≤ 𝑛 − 2

The first two equations establish the interpolation property. The next three equations estab-
lish 𝐶0-, 𝐶1-, and 𝐶2-continuity, respectively. Altogether we have 4𝑛 − 6 equations (conditions)
but 4𝑛 − 4 coefficients (degrees of freedom) of the 𝑛 − 1 polynomials. This leaves us with two
more conditions that we can impose:

• One common choice is to add 𝑝″
1(𝑥1) = 𝑝″

𝑛−1(𝑥𝑛) = 0. A cubic spline of this form is called
natural spline.
This might be an attractive choice for the example of cam profiles, because this means that
we start and end with zero acceleration.

• Another common choice is to add 𝑝′
1(𝑥1) = 𝑝′

𝑛−1(𝑥𝑛) and 𝑝″
1(𝑥1) = 𝑝″

𝑛−1(𝑥𝑛). We can there-
fore plug copies of the splines together end-to-end and the result is still 𝐶2-continuous. If
in addition 𝑦1 = 𝑦𝑛 then the result is a periodic 𝐶2-continuous function.
This choice is also attractive for cam profiles as we can periodically repeat the cam profile
without jumps in acceleration (or velocity).

Figure 4.3b illustrates a natural cubic spline. Natural cubic splines have the nice property that
they minimize strain energy: Consider a thin wooden strip that goes through the interpolation
points. The wooden strip will take a form that minimizes the strain energy. The form that we get
is exactly the one of the natural spline. This is essentially the reason why natural splines avoid
the oscillating behavior of higher-degree interpolation polynomials.

5The set of 𝑘-times continuously differentiable functions is often denoted by 𝐶𝑘. We then also say that 𝑓 is 𝐶𝑘-
continuous. A 𝐶0-continuous function means that 𝑓 is simply continuous. In this sense a cubic spline is a 𝐶2-continuous
interpolating spline of degree three.

46 CHAPTER 4. POLYNOMIAL INTERPOLATION

In order to compute a natural cubic spline we could simply solve the linear equation system
formed by the 4(𝑛 − 1) conditions. If we take a closer look, however, we see that this system can
be significantly simplified and we end up with 𝑛 − 1 equations. Moreover, the simplified system
actually has a special structure – it is in tridiagonal form – and can be solved in 𝑂(𝑛) time by
dedicated algorithms. Details can be found in appendix A.1.

Software packages like scipy for Python or MATLAB provide library functions that imple-
ment cubic spline computation. The following lines are from a Python interpreter shell and
produced the data for fig. 4.3b:

>>> import scipy.interpolate as interp
>>> xs = [-3, -2, -1, 0, 1, 1.5, 3]
>>> ys = [-1, -1, -0.5, 0, 1, 1, 1]
>>> f = interp.CubicSpline(x, y, bc_type='natural')
>>> for x in np.linspace(-3, 3, 33):
... print("({}, {})".format(x.round(2), f(x).round(2)))
...
(-3.0, -1.0)
(-2.81, -1.03)
[...]
(3.0, 1.0)

4.5 Numerical derivatives

Let 𝑓 be a differentiable function. We would like to numerically compute 𝑓 ′(𝑥) for some position
𝑥. Polynomials are easy to derive, so we could consider an interpolation polynomial 𝑝 around
𝑥 and take 𝑝′(𝑥) instead. Maybe 𝑓 is actually given in tabulated form so we cannot symbolically
derive it anyway, but we can compute the interpolation polynomial.

This raises the question whether it is justified to take 𝑝′(𝑥) as an approximation for 𝑓 ′(𝑥). Let
us denote by 𝑥1 < ⋯ < 𝑥𝑛 the interpolation nodes. Recall eq. (4.4), which said that for any 𝑥
there is a 𝜉 such that

𝑓 (𝑥) = 𝑝(𝑥) +
𝑓 (𝑛)(𝜉(𝑥))

𝑛! ⋅ 𝑤(𝑥).

We explicitly write 𝜉(𝑥) to emphasize that 𝜉 depends on 𝑥. Assuming that 𝜉 is differentiable, it
is easy to show6 that at all interpolation nodes 𝑥𝑘 the following holds:7

𝑓 ′(𝑥𝑘) = 𝑝′(𝑥𝑘) +
𝑓 (𝑛)(𝜉(𝑥𝑘))

𝑛! ⋅ 𝑤′(𝑥𝑘).

Note that 𝑤(𝑥𝑘) = 0 but 𝑤′(𝑥𝑘) is not zero.8 In other words, 𝑝′ only approximates 𝑓 ′ at inter-
polation nodes 𝑥𝑘, while 𝑝 meets 𝑓 exactly. Also note that if 𝑛 = 1 then 𝑝′(𝑥) = 0 so only 𝑛 ≥ 2 is
meaningful.

Two-point formula. In the simplest case we use 𝑛 = 2 interpolation nodes and therefore re-
ceive an interpolation polynomial of degree 1. Following eq. (4.12) and setting ℎ = 𝑥2 − 𝑥1 we

6𝑓 ′(𝑥) = 𝑝′(𝑥) + 1
𝑛! (𝑓 (𝑛+1)(𝜉(𝑥))𝜉 ′(𝑥)𝑤(𝑥) + 𝑓 (𝑛)(𝜉(𝑥))𝑤′(𝑥)) and 𝑤(𝑥𝑘) = 0.

7The equation can also be proven without the assumption that 𝜉 would be differentiable, but this is much harder.
8If 𝑤′(𝑥𝑘) = 0 would hold then 𝑤 would have two roots at 𝑥𝑘, and hence two interpolation nodes would be equal.

4.5. NUMERICAL DERIVATIVES 47

have

𝑝(𝑥) =
(𝑥2 − 𝑥)𝑦1 + (𝑥 − 𝑥1)𝑦2

ℎ
This immediately yields the so-called two-point formula

𝑓 ′(𝑥) ≈ 𝑝′(𝑥) =
𝑦2 − 𝑦1

ℎ (4.13)

Note that 𝑝′(𝑥) does not depend on 𝑥 anymore; it is constant. For any position 𝑥 we approx-
imate 𝑓 ′(𝑥) by the slope of the secant formed by the interpolation nodes. In other words, we
approximate the differential quotient by the difference quotient, see fig. 4.4a.

Three-point formula. Let us increase the number of nodes to 𝑛 = 3. For a fixed ℎ > 0 we
choose three equidistant interpolation nodes 𝑥1 = 𝑥2−ℎ, 𝑥2, 𝑥3 = 𝑥2+ℎ. According to Lagrange’s
formula eq. (4.8) we have

𝑝(𝑥) = 𝑦1𝐿1(𝑥) + 𝑦2𝐿2(𝑥) + 𝑦3𝐿3(𝑥) with 𝐿𝑘(𝑥) =
3

∏
𝑖=1
𝑖≠𝑘

𝑥 − 𝑥𝑖
𝑥𝑘 − 𝑥𝑖

and therefore

𝑝′(𝑥) = 𝑦1𝐿′
1(𝑥) + 𝑦2𝐿′

2(𝑥) + 𝑦3𝐿′
3(𝑥). (4.14)

Let us compute:

𝐿1(𝑥) =
𝑥 − 𝑥2

−ℎ ⋅
𝑥 − 𝑥3
−2ℎ , 𝐿′

1(𝑥) =
(𝑥 − 𝑥2) + (𝑥 − 𝑥3)

2ℎ2

𝐿2(𝑥) =
𝑥 − 𝑥1

ℎ ⋅
𝑥 − 𝑥3

−ℎ , 𝐿′
2(𝑥) =

(𝑥 − 𝑥1) + (𝑥 − 𝑥3)
−ℎ2

𝐿3(𝑥) =
𝑥 − 𝑥2

ℎ ⋅
𝑥 − 𝑥1

2ℎ , 𝐿′
3(𝑥) =

(𝑥 − 𝑥1) + (𝑥 − 𝑥2)
2ℎ2

In order to compute 𝑓 ′ at themiddle node 𝑥2 we obtain the so-called central three-point formula:

𝑓 ′(𝑥2) ≈ 𝑝′(𝑥2) =
𝑦1 ⋅ (−ℎ) + 𝑦3 ⋅ ℎ

2ℎ2 =
𝑦3 − 𝑦1

2ℎ . (4.15)

Note that 𝐿′
2(𝑥2) = 0, so 𝑦2 does not play a role anymore in the central three-point formula! In

fact eq. (4.15) looks quite like eq. (4.13) for a simple reason: The central three-point formula
gives the slope of the secant between the node 𝑥1 and 𝑥3, see fig. 4.4b. Still, 𝑓 ′(𝑥2) is much better
approximated using the central three-point formula than the two-point formula, because 𝑥2 sits
in the middle between 𝑥1 and 𝑥3. More precisely, in fig. 4.4b we obtain the tangent at 𝑥2 of the
parabola through the three nodes.

However, if we are given 𝑓 in a tabulated form and we want to compute 𝑓 ′ at the first or last
position then we cannot use the central three-point formula. But instead of resorting to the two-
point formula, we can still receive a better result using eq. (4.14), but we plug in the left resp.
right node:

𝑓 ′(𝑥1) ≈ 𝑝′(𝑥1) = 𝑦1
−3ℎ
2ℎ2 + 𝑦2

−2ℎ
−ℎ2 + 𝑦3

−ℎ
2ℎ2 =

−3𝑦1 + 4𝑦2 − 𝑦3
2ℎ

48 CHAPTER 4. POLYNOMIAL INTERPOLATION

(𝑥1, 𝑦1)

(𝑥2, 𝑦2)

(a) Two-point formula

(𝑥1, 𝑦1)

(𝑥2, 𝑦2)
(𝑥3, 𝑦3)

𝑝

(b) Central three-point formula

Figure 4.4: Numerical derivative of tanh(𝑥) using interpolation polynomials 𝑝 with two (left)
and three (right) nodes.

4.6 Numerical integration

We startwith a similar situation as for numerical differentiation: Let 𝑓 ∶ [𝑎, 𝑏] → ℝ be the function
to be integrated. We replace 𝑓 by a polynomial 𝑝 and consider the integral of 𝑝 over [𝑎, 𝑏] instead.
However, while computing 𝑓 ′(𝑥) is a local problem at the position 𝑥, in order to integrate 𝑓, we
have to consider 𝑓 globally on [𝑎, 𝑏].

Remember that we learned two approaches for a polynomial interpolation of 𝑓 in this chapter:
A single polynomial or a spline. In the first case we obtain the basic integration formulas in
section 4.6.1 and in the second case we obtain extended formulas section 4.6.2.

4.6.1 Basic integration formulas
Our goal is to numerically compute the integral of a function 𝑓 over an interval [𝑎, 𝑏]. We choose
𝑛 + 1 equidistant nodes

𝑥𝑘 = 𝑎 + 𝑘 ⋅ ℎ,

where 0 ≤ 𝑘 ≤ 𝑛 and ℎ = 𝑏−𝑎/𝑛 is called the step size. Similar to numerical derivatives, we
compute an interpolation polynomial 𝑝 for 𝑓, which we can integrate. We set

𝑦𝑘 = 𝑓 (𝑥𝑘).

Using Lagrange’s formula from eq. (4.8) we obtain

∫
𝑏

𝑎
𝑓 (𝑥) d𝑥 ≈ ∫

𝑏

𝑎
𝑝(𝑥) d𝑥 =

𝑛
∑
𝑘=0

𝑦𝑘 ∫
𝑏

𝑎
𝐿𝑘(𝑥) d𝑥.

Hence, the entire problem of numerical integration is essentially reduced to computing the
terms

𝐴𝑘 = ∫
𝑏

𝑎
𝐿𝑘(𝑥) d𝑥. (4.16)

We can simplify a bit more by transforming the interval [𝑎, 𝑏] to [0, 𝑛] via a transformation

𝑡 =
𝑥 − 𝑎

ℎ resp. 𝑥 = 𝑎 + 𝑡ℎ.

4.6. NUMERICAL INTEGRATION 49

Applying this transformation to the definition of 𝐿𝑘(𝑥) in eq. (4.9) we obtain

𝐿𝑘(𝑥) =
𝑛

∏
𝑖=0
𝑖≠𝑘

𝑥 − 𝑥𝑖
𝑥𝑘 − 𝑥𝑖

=
𝑛

∏
𝑖=0
𝑖≠𝑘

𝑡 − 𝑖
𝑘 − 𝑖 .

Applying this transformation to eq. (4.16) we then get

𝐴𝑘 = ∫
𝑏

𝑎
𝐿𝑘(𝑥) d𝑥 = ℎ ∫

𝑛

0
𝐿𝑘(𝑥) d𝑡 = ℎ ∫

𝑛

0

𝑛
∏
𝑖=1
𝑖≠𝑘

𝑡 − 𝑖
𝑘 − 𝑖 d𝑡.

With

𝛼(𝑛)
𝑘 = ∫

𝑛

0

𝑛
∏
𝑖=1
𝑖≠𝑘

𝑡 − 𝑖
𝑘 − 𝑖 d𝑡 (4.17)

we have

𝐴𝑘 = ℎ𝛼(𝑛)
𝑘 .

This now gives us the so-called (closed) Newton-Cotes formula9 of degree 𝑛:

∫
𝑏

𝑎
𝑓 (𝑥) d𝑥 ≈ ℎ

𝑛
∑
𝑘=0

𝑓 (𝑥𝑘)𝛼(𝑛)
𝑘 . (4.18)

All that remains is to make a choice about 𝑛 and to compute 𝛼(𝑛)
0 , … , 𝛼(𝑛)

𝑛 . Different choices
of 𝑛 then give us different integration rules, e.g., the Trapezoidal rule, Simpson’s rule, Simpson’s
3/8 rule, Boole’s rule for 𝑛 = 0, 1, 2, 3, respectively. In the following, we compute the first two
examples.

Trapezoidal rule. We start with the case 𝑛 = 1 and solve eq. (4.17):

𝛼(1)
0 = ∫

1

0

𝑡 − 1
0 − 1 d𝑡 =

1
2

𝛼(1)
1 = ∫

1

0

𝑡 − 0
1 − 0 d𝑡 =

1
2

Plugging the results in eq. (4.18) gives the trapezoidal rule:

∫
𝑏

𝑎
𝑓 (𝑥) d𝑥 ≈ ℎ

𝑓 (𝑎) + 𝑓 (𝑏)
2 (4.19)

We can interpret this rule as replacing 𝑓 by a single linear function interpolating at 𝑎 and 𝑏,
whose integral corresponds to the area of the resulting trapezoid.

Simpson’s rule. Increasing the number of nodes to 𝑛 = 2 we obtain after some calculations

𝛼(2)
0 =

1
3 𝛼(2)

1 =
4
3 𝛼(2)

2 =
1
3.

The resulting formula is known as Simpson’s rule or Simpson’s 1/3 rule or Kepler’s barrel rule:

∫
𝑏

𝑎
𝑓 (𝑥) d𝑥 ≈

ℎ
3

⎛⎜
⎝

𝑓 (𝑎) + 4𝑓 (
𝑎 + 𝑏

2) + 𝑓 (𝑏)⎞⎟
⎠

. (4.20)
9We can apply the very same procedure without including the boundary points 𝑎 and 𝑏 as interpolation nodes. This

then yields the open Newton-Cotes formulas.

50 CHAPTER 4. POLYNOMIAL INTERPOLATION

4.6.2 Extended formulas
Applying the Newton-Cotes formulas for higher degree maneuvers ourselves into the problem
of Runge’s phenomenon. Hence, instead of determining the 𝛼(𝑛)

𝑘 for large 𝑛, we actually use the
simpler Trapezoidal or Simpson rule, but apply it on sub-intervals of [𝑎, 𝑏]. This then yields the
extended Newton-Cotes formulas or composite rules.

We start with dividing [𝑎, 𝑏] into 𝑁 parts of equal length

𝐻 =
𝑏 − 𝑎

𝑁 .

Each part is now a sub-interval [𝑧𝑗−1, 𝑧𝑗] with

𝑧𝑗 = 𝑎 + 𝑗𝐻

and we compute

∫
𝑏

𝑎
𝑓 (𝑥) d𝑥 =

𝑁
∑
𝑗=1

∫
𝑧𝑗

𝑧𝑗−1
𝑓 (𝑥) d𝑥

⏟⏟⏟⏟⏟⏟⏟
𝐼𝑗

.

Using the trapezoidal rule for 𝐼𝑗 gives the extended trapezoidal rule:

∫
𝑏

𝑎
𝑓 (𝑥) d𝑥 ≈

𝐻
2

⎛⎜⎜
⎝

𝑓 (𝑧0) + 𝑓 (𝑧𝑁) + 2
𝑁−1
∑
𝑗=1

𝑓 (𝑧𝑗)
⎞⎟⎟
⎠

.

Using the Simpson’s rule for 𝐼𝑗 gives the extended Simpson’s rule and therefore we use 2𝑁 + 1
nodes for 𝑁 intervals and have ℎ = 𝐻/2 in eq. (4.20). We denote the nodes as 𝑥𝑗 = 𝑎 + 𝑗𝐻

2 for
0 ≤ 𝑗 ≤ 2𝑁 and obtain

∫
𝑏

𝑎
𝑓 (𝑥) d𝑥 ≈

ℎ
3

⎛⎜⎜
⎝

𝑓 (𝑥0) + 𝑓 (𝑥2𝑁) + 2
𝑁−1
∑
𝑘=1

𝑓 (𝑥2𝑘) + 4
𝑁−1
∑
𝑘=1

𝑓 (𝑥2𝑘−1)⎞⎟⎟
⎠

=
𝐻
6 (𝑓 (𝑥0) + 4𝑓 (𝑥1) + 2𝑓 (𝑥2) + 4𝑓 (𝑥3) + 2𝑓 (𝑥4) + ⋯ + 𝑓 (𝑥2𝑁)) .

4.7 Richardson extrapolation

Assume that we compute a numerical integral with a step size ℎ. Then we can compute the nu-
merical integral for smaller and smaller step sizes and extrapolate the case where the step size ℎ
would become zero in the limit. This is a very useful general idea that goes by Richardson extrap-
olation. Richardson extrapolation is therefore a method to accelerate convergence of a sequence.
A well known application is Romberg integration.

4.7.1 Limit of a sequence
Polynomial interpolation is typically not well suited for extrapolation, i.e., for the computation
of 𝑓 (𝑥) when 𝑥 is outside the interval of the interpolation nodes. However, one exception is when
the nodes 𝑥1, … , 𝑥𝑛 form the prefix of a sequence (𝑥𝑖) that converges against 𝑥.

4.7. RICHARDSON EXTRAPOLATION 51

Let us consider a function 𝑓 and we would like to extrapolate 𝑓 (0). With a fixed ℎ > 0 we
choose nodes

𝑥𝑖 =
ℎ

2𝑖−1 .

The sequence (𝑥𝑖) = (ℎ, ℎ/2, ℎ/4, …) converges to zero. The Neville recursion in eq. (4.11) for
𝑓 (0) = 𝑇1,…,𝑛 now becomes a bit simpler:

𝑇𝑖 = 𝑓 (𝑥𝑖)

𝑇𝑖,…,𝑖+𝑚 =
2𝑚𝑇𝑖+1,…,𝑖+𝑚 − 𝑇𝑖,…,𝑖+𝑚−1

2𝑚 − 1 .

For certain applications, such as Romberg integration, it may turn out that 𝑓 is an even func-
tion, which means 𝑓 (𝑥) = 𝑓 (−𝑥). In this case we would also use an even polynomial function
𝑝(𝑥) = 𝑎0 + 𝑎2𝑥2 + 𝑎4𝑥4 + … for extrapolation, where the odd terms 𝑥, 𝑥3, … are removed. Then
we can actually substitute 𝑡 = 𝑥2, which gives 𝑝(𝑡) = 𝑎0 +𝑎2𝑡+𝑎4𝑡4 … and nodes 𝑡𝑖 = 𝑥2

𝑖 = 2ℎ/4𝑖−1.
This leads finally to an improved Neville recursion

𝑇𝑖 = 𝑓 (𝑡𝑖) (4.21)

𝑇𝑖,…,𝑖+𝑚 =
4𝑚𝑇𝑖+1,…,𝑖+𝑚 − 𝑇𝑖,…,𝑖+𝑚−1

4𝑚 − 1 . (4.22)

4.7.2 Romberg integration
Romberg integration is Richardson extrapolation applied to the extended trapezoidal rule for
numerical integration. That is, we consider

𝑇(ℎ) =
ℎ
2

⎛⎜⎜
⎝

𝑓 (𝑥0) + 𝑓 (𝑥𝑁) + 2
𝑁−1
∑
𝑗=1

𝑓 (𝑥𝑗)
⎞⎟⎟
⎠

.

for 𝑥𝑗 = 𝑎 + 𝑗ℎ and ℎ = 𝑏−𝑎/𝑁. Then it holds that

lim
ℎ→0

𝑇(ℎ) = ∫
𝑏

𝑎
𝑓 (𝑥) d𝑥.

It now turns out that the Taylor series of 𝑇 actually only consists of even powers10 and hence
𝑇 is an even function. This now allows us to apply eq. (4.22) to extrapolate 𝑇(0). This method
is known as the Romberg integration.

10This is a consequence of the Euler-Maclaurin formula.

52 CHAPTER 4. POLYNOMIAL INTERPOLATION

Part III

Computational Geometry

53

Chapter5
Geometric computations

5.1 Introduction

Many algorithmic problems in industrial application domains –GIS1, computer graphics, CAD/-
CAM2 and robotics, logistics, drug exploration in pharmacy, et cetera – have a strong geometric
flavor. For instance, computing the shortest path for a car on a street map, routing a wire on a
PCB3, computing offset paths for CNC machining, intersecting geometric shapes in a graphics
design software, shooting and intersecting a ray with objects in a 3D scenery.

The field of computational geometry is about algorithms and data structures in a geometric
context. Devising algorithms and analyzing their computational efficiency concerning time and
space is the dominant part in this research field. From a practical point of view, however, algo-
rithm engineering in computational geometry also needs to address computing with geometric
objects – like points and lines – just like we did for numbers in chapter 2.

A large number of topics in computational geometry are actually of strong combinatorial
nature, and this field is aptly called combinatorial geometry. Take for instance the street network
of Austria on which we would like to compute shortest routes. From an initial point of view
this is evidently a geometric problem. But at second glance, we can forget about the precise
coordinates of cities and junctions and observe that the problem is actually driven by a semi-
geometrical network structure: by the “topology” of the street network (combinatorial struc-
ture) which tells which street sections interconnect the network nodes and the length of these
street sections (geometric structure). This is why computational geometry is closely related to
combinatorics, topology and graph theory.4

5.2 Geometric constructions and predicates

A predicate is a boolean property of objects. For instance, the predicate 𝑓 ∶ ℤ → {false, true} ∶ 𝑓 (𝑥)
mod 2 = 0 on the set of whole numbers tells whether a number is even. A geometric example
would be a predicate on the set of pair of lines telling whether the pair would intersect. Another
predicate given a circle and a point would be whether the point lies within the circle.

Unlike a predicate, a geometric construction produces geometric objects, like points or lines.
So while a predicate asks whether two lines intersect, a geometric construction would compute

1Geographic Information Systems
2Computer-Aided Design, Computer-Aided Manufacturing
3Printed-circuit board
4There is also a smaller subfield of “geometry of numbers” within discrete and combinatorial geometry, which is part

of number theory. There is a tradition in Vienna towards this field, see for instance the subspace theorem by Schmidt.

55

56 CHAPTER 5. GEOMETRIC COMPUTATIONS

the actual intersection point of two lines, or the circumcenter of a triangle, or the line between
two points.

Many geometric algorithms require no constructions but require predicates only. For in-
stance, given a finite point set {𝑝1, … , 𝑝𝑛} ∈ ℝ2 then we compute the convex hull (see chapter 6)
using predicates only. Indeed the geometric predicate telling whether a point lies left to a ray is
all we need.

5.2.1 Construction of orthogonal vectors

A simple example for a construction is the rotation of a vector by the angle 𝜑 = 90°. This is
achieved by simply switching coordinates and changing sign of one coordinate:

(𝑥
𝑦) ⋅ (−𝑦

𝑥) = 𝑥𝑦 − 𝑦𝑥 = 0. (5.1)

The vectors are orthogonal as the inner product is zero. For a rotation by 90° we have two ways
to switch sign; the one rotates in counterclockwise direction, the other in clockwise direction.
This is also evident from the rotation matrix by a counterclockwise angle 𝜑:

(cos𝜑 − sin𝜑
sin𝜑 cos𝜑) (𝑥

𝑦) = (0 −1
1 0) (𝑥

𝑦) = (−𝑦
𝑥)

So a rotation by 90° can be done very quickly without loss in numerical precision and computa-
tionally fast as well. This is important because basic geometric predicates can be implemented
using right-angle rotations of vectors.

5.2.2 Orientation of three points

We will later learn about the Graham scan algorithm for convex hulls, see algorithm 4. If we
look carefully then all we need for this algorithm from a geometric perspective is the test – the
predicate – whether three points form a left turn. This is the only numerical part.

Actually, there are many ways to phrase this question, see fig. 5.1. Given three points 𝑝, 𝑞, 𝑟 ∈
ℝ2, we may ask whether the triangle 𝑝𝑞𝑟 is oriented counterclockwise, or whether 𝑟 is left to the
ray ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝𝑞, or whether the polygonal chain 𝑝𝑞𝑟 forms a left turn.

𝑝
𝑞

𝑟

𝑝
𝑞

𝑟

𝑝
𝑞

𝑟

𝑝
𝑞

𝑟𝑛

Figure 5.1: Four formulations of the same question: Is triangle 𝑝𝑞𝑟 ccw oriented, is 𝑟 left to ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝𝑞, is
the polygonal chain 𝑝𝑞𝑟 a left turn, and is the rotation of ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝𝑞 to ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑝𝑟 less than a half turn? All are
answered by Δ(𝑝, 𝑞, 𝑟) > 0.

A bad idea would be to actually compute and compare the angles of the vectors ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝𝑞 and ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑝𝑟,
because this involves trigonometric functions, which are in general inaccurate and slow. Let us
instead consider the parallelogram formed by the vectors ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝𝑞 and ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑝𝑟 in the left figure of fig. 5.1.

5.2. GEOMETRIC CONSTRUCTIONS AND PREDICATES 57

There is a formula for the signed area of this parallelogram given by the following determinant:

Δ(𝑝, 𝑞, 𝑟) =
∣
∣
∣
∣
∣

𝑝𝑥 𝑞𝑥 𝑟𝑥
𝑝𝑦 𝑞𝑦 𝑟𝑦
1 1 1

∣
∣
∣
∣
∣
= 𝑝𝑥𝑞𝑦 + 𝑞𝑥𝑟𝑦 + 𝑟𝑥𝑝𝑦 − 𝑝𝑥𝑟𝑦 − 𝑞𝑥𝑝𝑦 − 𝑟𝑥𝑞𝑦. (5.2)

By “signed area” we mean that |Δ(𝑝, 𝑞, 𝑟)| is the area, but Δ(𝑝, 𝑞, 𝑟) is positive if 𝑝𝑞𝑟 is coun-
terclockwise (ccw) oriented, negative if 𝑝𝑞𝑟 is clockwise (cw) oriented and zero if 𝑝, 𝑞, 𝑟 are
collinear5. In other words, Δ(𝑝, 𝑞, 𝑟) is twice the signed area of the triangle 𝑝𝑞𝑟. The matrix
in eq. (5.2) is actually related to homogeneous coordinates, which are heavily used in computer
graphics and robotics.6

The last figure in eq. (5.2) is somewhat different in the sense that it compares the two vectors
𝑞 − 𝑝 and 𝑟 − 𝑝 rather than three points. Let us denote by 𝑛 the vector we obtain by rotating the
vector 𝑞 − 𝑝 by 90° in ccw direction. We then ask whether 𝑟 − 𝑝 projected onto 𝑛 is positive, i.e.,
whether the inner product 𝑛 ⋅ (𝑟 −𝑝) is positive. Note that 𝑛 = (−(𝑞𝑦 −𝑝𝑦), (𝑞𝑥 −𝑝𝑥)) by eq. (5.1)
and hence

𝑛 ⋅ (𝑟 − 𝑝) = ⎛⎜
⎝

−(𝑞𝑦 − 𝑝𝑦)
𝑞𝑥 − 𝑝𝑥

⎞⎟
⎠

⋅ ⎛⎜
⎝

𝑟𝑥 − 𝑝𝑥
𝑟𝑦 − 𝑝𝑦

⎞⎟
⎠

= (𝑞𝑥 − 𝑝𝑥) ⋅ (𝑟𝑦 − 𝑝𝑦) − (𝑞𝑦 − 𝑝𝑦)(𝑟𝑥 − 𝑝𝑥) (5.3)

On the other hand

Δ(𝑝, 𝑞, 𝑟) =
∣
∣
∣
∣
∣

𝑝𝑥 𝑞𝑥 𝑟𝑥
𝑝𝑦 𝑞𝑦 𝑟𝑦
1 1 1

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

𝑝𝑥 𝑞𝑥 − 𝑝𝑥 𝑟𝑥 − 𝑝𝑥
𝑝𝑦 𝑞𝑦 − 𝑝𝑦 𝑟𝑦 − 𝑝𝑦
1 0 0

∣
∣
∣
∣
∣

= (𝑞𝑥 − 𝑝𝑥) ⋅ (𝑟𝑦 − 𝑝𝑦) − (𝑞𝑦 − 𝑝𝑦)(𝑟𝑥 − 𝑝𝑥)

and so we just learned that Δ(𝑝, 𝑞, 𝑟) = 𝑛 ⋅ (𝑟 − 𝑝).7 Note that eq. (5.3) only requires two multi-
plications, but at the expense of a numerical asymmetry as 𝑝𝑥 and 𝑝𝑦 are occurring twice.

Algorithm 1 An algorithm that tests wither the points 𝑝𝑞𝑟 are in ccw orientation.
procedure ccw(𝑝, 𝑞, 𝑟)

return 𝑝𝑥𝑞𝑦 + 𝑞𝑥𝑟𝑦 + 𝑟𝑥𝑝𝑦 − 𝑝𝑥𝑟𝑦 − 𝑞𝑥𝑝𝑦 − 𝑟𝑥𝑞𝑦
end procedure

We can summarize these insights in algorithm 1. Note that we deliberately do not return a
boolean value but a numerical value for two reasons: First, we can distinguish three cases: ccw,
collinear, cw. Secondly, the comparison against zero requires in general some epsilon threshold
and the epsilon is application dependent, so we leave it to the caller.

5.2.3 Point location in triangles and convex polygons
Assume we are given a convex polygon 𝑃 = (𝑝1, … , 𝑝𝑛) with its vertices 𝑝𝑖 given in ccw order,
as illustrated in fig. 5.2. (We learn about convexity in section 6.1, but for now it suffices to know
that a convex polygon has no dents.) We would like to test whether a given point 𝑟 is in 𝑃 or not.
In particular, 𝑃 could be a triangle.

5Collinear means that thy reside on a common line.
6The idea behind homogeneous coordinates is to embed the plane ℝ2 into three space as ℝ2 × {1} by setting the

𝑧-coordinate of all points to 1. By this trick the translation of points becomes a linear operation. The vectors 𝑝, 𝑞, 𝑟 span
a basis of ℝ3, if not collinear, and the sign of Δ(𝑝, 𝑞, 𝑟) tells us the orientation of the basis. Moreover, Δ(𝑝, 𝑞, 𝑟) gives us
the signed volume of the “unit cube” in this basis, i.e., the signed volume of {𝜆1𝑝 + 𝜆2𝑞 + 𝜆3𝑟 ∶ 𝜆𝑖 ∈ [0, 1]}. The plane
ℝ2 × {1} can also be interpreted as the two-dimensional projective plane.

7And now we directly see that Δ(𝑝, 𝑞, 𝑟) is the signed area of the parallelogram of the left figure in fig. 5.1.

58 CHAPTER 5. GEOMETRIC COMPUTATIONS

𝑟

𝑝1

𝑝2

𝑝3

𝑝𝑛

Figure 5.2: A point is in a convex polygon if it lies to the left of all edges in ccw direction.

The convexity of 𝑃 makes this a very simple task as 𝑟 is in 𝑃 if and only if 𝑟 lies to the left of
all edges, i.e., to the left of all rays ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑝1𝑝2, ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑝2𝑝3, … , ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝𝑛𝑝1. In other words, if 𝑟 lies outside of 𝑃 then 𝑟
lies to the right of some edge of 𝑃. So a simple algorithm that runs in 𝑂(𝑛) time is the one given
in algorithm 2.

Algorithm 2 An algorithm that tests in linear time whether a point 𝑝 is in a convex polygon 𝑃
given in ccw direction.
procedure in_convex_ccw_polygon(𝑃, 𝑟)

for 𝑖 ∈ {1, … , 𝑛} do
if ccw(𝑝𝑖, 𝑝1+(𝑖 mod 𝑛), 𝑟) < 0 then

return false
return true

end procedure

If, however, 𝑃 would not have been convex then a reasonably simple solution could be to
triangulate the polygon and make the test for every triangle. There are, however, more efficient
methods.

5.2.4 Intersection of two line segments

Given two line segments 𝑎𝑏 and 𝑐𝑑, we can use the predicate ccw alone to test whether the two
line segments intersect. All we have to do is to check that the endpoints of 𝑐𝑑 lie on different
sides of 𝑎𝑏, and vice versa. So four invocations of ccw are sufficient. (Note that testing it vice
versa is necessary!)

5.2.5 Point location in circle

Given a circle and a point 𝑝 ∈ ℝ2, we can ask whether the point is within, on, or outside the
circle. Depending on how the circle is given, the answers are more or less trivial.

In the simple case the circle is given by a center point 𝑐 ∈ ℝ2 and a radius 𝑟 ≥ 0. Then we
simply check whether the distance of 𝑝 to 𝑐 is less, equal or greater to 𝑟, i.e., we compare ‖𝑝 − 𝑐‖
against 𝑟. For numerical and efficiency reasons we of course avoid square roots when computing
distances between points and instead compare squared distances as a general rule of thumb:

(𝑝𝑥 − 𝑐𝑥)2 + (𝑝𝑦 − 𝑐𝑦)
2

⪋ 𝑟2 (5.4)

In the more involved case the circle is given by three points 𝑎, 𝑏, 𝑐 ∈ ℝ2. On other words,
the circle is given as the circumcircle of the triangle 𝑎𝑏𝑐. We assume that 𝑎, 𝑏, 𝑐 are given in

5.2. GEOMETRIC CONSTRUCTIONS AND PREDICATES 59

𝑎
𝑏

𝑐 𝑝, ○(𝑎, 𝑏, 𝑐, 𝑝) = 0

𝑞, ○(𝑎, 𝑏, 𝑐, 𝑞) > 0

Figure 5.3: Illustration of the in-circle point location test for a circle spanned by three points.

counterclockwise direction – we know already how to check – then we can test the sign of the
following determinant

○(𝑎, 𝑏, 𝑐, 𝑝) =

∣
∣
∣
∣
∣
∣
∣

𝑎𝑥 𝑎𝑦 𝑎2
𝑥 + 𝑎2

𝑦 1
𝑏𝑥 𝑏𝑦 𝑏2

𝑥 + 𝑏2
𝑦 1

𝑐𝑥 𝑐𝑦 𝑐2
𝑥 + 𝑐2

𝑦 1
𝑝𝑥 𝑝𝑦 𝑝2

𝑥 + 𝑝2
𝑦 1

∣
∣
∣
∣
∣
∣
∣

. (5.5)

If ○(𝑎, 𝑏, 𝑐, 𝑝) equals zero then 𝑝 is on the circle, if it is negative then 𝑝 is within the circle and
if it is positive then 𝑝 is outside the circle. Note that no square roots are required here. A proof
sketch behind this can be found in appendix A.2.

60 CHAPTER 5. GEOMETRIC COMPUTATIONS

Chapter6
Convex hull

6.1 Convexity
Convex hulls are a very basic concept in the field of computational geometry and often used as a
preprocessing step for other algorithms. Assumewe are given 𝑛 points in the plane that vaguely
resemble a shape in the plane, as in fig. 6.3. How do we restore the shape in terms of a polygon?
One answer to this could be the convex hull.1 Let us first introduce a few definitions.

Definition 1. We call a set 𝐴 ⊆ ℝ𝑑 convex if for any two points 𝑝, 𝑞 ∈ 𝐴 the entire line segment
𝑝𝑞 is contained in 𝐴.

In fig. 6.1 we illustrate two sets in ℝ2. The right set is non-convex because we can find two
points 𝑝 and 𝑞 such the line segment 𝑝𝑞 is not entirely contained in 𝐴. So vaguely speaking, a
set is convex if it has no “embayment” like the one in fig. 6.1b. As a general rule of thumb in
mathematics and computer science, we can say that problems tend to become simpler if they are
convex. Take for instance the predicate whether a point is in a (convex) polygon in section 5.2.3.
2

So far, we did not say how we exactly define 𝑝𝑞. Since ℝ𝑑 is a vector space we can define

𝑝𝑞 = {𝜆𝑝 + (1 − 𝜆)𝑞∶ 𝜆 ∈ [0, 1]}.

where we see 𝑝 and 𝑞 as vectors. This is a convenient definition from an algorithmic point of
view, as we can simply compute all points on the line segment 𝑝𝑞 by choosing a 𝜆 ∈ [0, 1] and
computing the vector 𝜆𝑝 + (1 − 𝜆)𝑞. We get the endpoint 𝑞 for 𝜆 = 0, the endpoint 𝑝 for 𝜆 = 1
and all points in between for 0 < 𝜆 < 1. For instance, we get the mid point of 𝑝𝑞 for 𝜆 = 1

2 .
The expression 𝜆𝑝 + (1 − 𝜆)𝑞 with 0 ≤ 𝜆 ≤ 1 is called a convex combination of 𝑝 and 𝑞, which is a
special case of a linear combination. More generally, for points (or vectors) 𝑝1, … , 𝑝𝑛 we call the
linear combination

𝜆1𝑝1 + 𝜆2𝑝2 + ⋯ + 𝜆𝑛𝑝𝑛

a convex combination if ∑𝑛
𝑖=1 𝜆𝑖 = 1 and 𝜆𝑖 ∈ [0, 1] for all 0 ≤ 𝑖 ≤ 𝑛. The set of convex combi-

nations of two points 𝑝 and 𝑞 is the line segment 𝑝𝑞 and the set of convex combinations of three
points 𝑝, 𝑞, 𝑟 is the triangle formed by the three points. If we set the coefficients 𝜆𝑖 all equal to 1/𝑛
then we obtain the center of gravity, see fig. 6.2.

1For non-convex shapes the so-called alpha shape is a generalization of the convex hull that can be used for this shape
restoration task.

2Personal remark: Peter Gruber used to say that if mathematical functions and bodies have certain properties then
convexity often makes these properties even stronger, see also [12, p. VI]. In this sense, convexity is the steroids of
mathematical properties, which eventually also makes algorithms simpler and more powerful.

61

62 CHAPTER 6. CONVEX HULL

𝐴

𝑝
𝑞

(a) A convex set in the plane.

𝐴

𝑝
𝑞

(b) A non-convex set in the plane.

Figure 6.1: A set 𝐴 is called convex if for each pair of points 𝑝, 𝑞 ∈ 𝐴 the entire line segment 𝑝𝑞
is contained in 𝐴.

𝑝

𝑝+𝑞
2

𝑞

𝑝 𝑞

𝑟

𝑝+𝑞+𝑟
3

Figure 6.2: The set of convex combinations of two points forms a line segment. The set of convex
combinations of three points forms a triangle. By setting the coefficients all equal we obtain the
center of gravity, e.g., (𝑝+𝑞)/2 for the line segment and (𝑝+𝑞+𝑟)/3 for the triangle.

Definition 2. Wedefine the convex hull conv{𝑝1, … , 𝑝𝑛} of 𝑛points 𝑝1, … , 𝑝𝑛 ∈ ℝ𝑑 as the smallest3
convex set that contains 𝑝1, … , 𝑝𝑛. More generally, for a set 𝐴 ⊆ ℝ𝑑 we define conv𝐴 as the
smallest convex superset of 𝐴 in ℝ𝑑.

Let us consider the finite point set 𝑝1, … , 𝑝𝑛 in fig. 6.3. By definition conv{𝑝1, … , 𝑝𝑛} is the
smallest convex superset of {𝑝1, … , 𝑝𝑛}. However, it is also the set of all convex combinations of
𝑝1, … , 𝑝𝑛. In other words, in fig. 6.2 the line segment is equal conv{𝑝, 𝑞} and the triangle is equal
conv{𝑝, 𝑞, 𝑟}. The convex hull of a finite point set in the plane is a convex polygon and the convex
hull of a finite point set in higher-dimensional space is a convex polyhedron.

An intuitive visualization of the smallest convex super set in the plane is the following: We
place at each point 𝑝𝑖 a nail and put a tight elastic rubber band around the point set. When the
rubber band shrinks it attains the shape of conv{𝑝1, … , 𝑝𝑛} as in fig. 6.3.

Adding or removing a nail (point) in the interior does not change the rubber band (convex
hull). In particular, adding any convex combination of 𝑝1, … , 𝑝𝑛 to the point set does not change
the convex hull. This is a nice insight we can use to speed-up algorithms for convex hulls by
reducing the number of input points: We take any three input points fromfig. 6.3, forma triangle,
and any input point in (the interior of) this triangle can be discarded.4

6.2 Quickhull

Discarding points in triangles leads us directly to the divide-and-conquer convex hull algorithm
quickhull, whose name is derived from the quicksort algorithm [3]. The quickhull algorithm is
implemented in the well known qhull [2] software library.

3“smaller” than 𝐵 if 𝐴 ⊆ 𝐵. However, it is actually not immediately clear why there would only one smallest convex
super set as ⊆ does not yield a total order. Hence, the convex hull may instead be defined as the infinite intersection of
all convex supersets and then it is shown that the result is (i) convex and (ii) the smallest such set.

4A more practical variant is to remove all points of large axis-aligned rectangles instead of triangles, see [13].

6.3. GRAHAM SCAN 63

Figure 6.3: The convex hull of 𝑛 input points in the plane forms a convex polygon. We can think
of it as the resulting shape of a tight elastic rubber band (dashed line) around nails placed at
the input points. Any triangle (dotted) formed by three input points is entirely contained in the
convex hull.

The algorithm. The quickhull algorithm separately computes the upper and the lower part of
the convex hull by repeatedly discarding points in triangles. It starts by finding the left-most
point 𝑝 and the right-most point 𝑞 of the point set, see fig. 6.4a. For the upper part it considers
the point 𝑟 with largest orthogonal distance to 𝑝𝑞, but to the left of the ray ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝𝑞. We learned that
all points in the triangle 𝑝𝑞𝑟 can be discarded.

Next it recursively repeats by constructing triangles and discarding points: It considers the
line 𝑝𝑟 and finds the point with largest orthogonal distance, again to the left of ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑝𝑟. All points in
there are discarded. Then it does the same for the ray 𝑟𝑞: It constructs a triangle with the point
that is left-most to ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑟𝑞 and discards points, see fig. 6.4b. When no points are left it is done with
the upper part. The entire algorithm is summarized in algorithm 3.

The essential idea can be generalized to convex hulls in ℝ𝑑. Instead of triangles we have
simplices5 of higher dimension, see [3] for details.

Analysis. Let us consider algorithm 3. If the 𝑛 input points are distributed in an unfavorable
way then 𝑂(𝑛) many calls of partialhull cost 𝑂(𝑛) time each, which leads to a total of 𝑂(𝑛2) time
in the worst case. However, if the recursion is balanced well then the recursion depth is 𝑂(log𝑛)
and on each recursion level we spend in total 𝑂(𝑛) time, leading to total time complexity of
𝑂(𝑛 log𝑛).

6.3 Graham scan

A simple algorithm that runs in 𝑂(𝑛 log𝑛) time in the worst case is Graham’s scan. It essentially
orders the points by angles around an anchor point and then iteratively constructs the hull. Here,
however, we present a practical variant of the original algorithm that separately computes the
upper and lower part of the convex hull and avoids sorting the points by angles, which would
be unfavorable in terms of numerics and speed.

5A 𝑑-dimensional simplex, or 𝑑-simplex, is the convex hull of 𝑑 + 1 points in ℝ𝑑. It is a line segment in ℝ1, a triangle
in ℝ2, a tetrahedron in ℝ3.

64 CHAPTER 6. CONVEX HULL

Algorithm 3 The quickhull algorithm to compute conv𝑆.
procedure quickhull(𝑆) ▷ Compute convex hull of point set 𝑆

𝑝 ←argmin𝑣∈𝑆 𝑣.𝑥 ▷ Left-most input point
𝑞 ←argmax𝑣∈𝑆 𝑣.𝑥 ▷ Right-most input point
return partialhull(𝑆, 𝑝, 𝑞) + partialhull(𝑆, 𝑞, 𝑝)

end procedure

procedure partialhull(𝑆, 𝑝, 𝑞) ▷ Returns the partial convex hull left to ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝𝑞, in-
cluding 𝑝 but excluding 𝑞.

𝑆 ←{𝑣 ∈ 𝑆∶ 𝑝, 𝑞, 𝑣 is a left turn} ▷ Take only points left to ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝𝑞
if |𝑆| ≤ 1 then ▷ Only at most one point left, we are done

return [𝑝] + 𝑆
end if
𝑟 ←argmax𝑣∈𝑆 𝑑(𝑣, ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝𝑞) ▷ Maximum orthogonal distance
return partialhull(𝑆, 𝑝, 𝑟) + partialhull(𝑆, 𝑟, 𝑞)

end procedure

𝑝

𝑟

𝑞

(a) Step 1: Find left-most point 𝑝 and right-most point 𝑞. Find 𝑟 farthest to the left of ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝𝑞. Discard all points
in triangle 𝑝𝑞𝑟.

𝑝

𝑟

𝑞

(b) Recursive step: Again find point farthest to the left of ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑝𝑟 and discard all points in the new triangle.
Same for ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑟𝑞. Stop if there are no points left.

Figure 6.4: The quickhull algorithm separately computes the upper and the lower part of the
convex hull. Here we only illustrate the upper part.

6.4. LOWER BOUND ON THE TIME COMPLEXITY 65

Algorithm. We start by sorting the points lexicographically, i.e., primarily by the 𝑥-coordinate
and secondarily by the 𝑦-coordinate. The left-most point 𝑝 and right-most point 𝑞 are the first
and last point in this order. To compute the upper convex hull in fig. 6.5 we first remove all
points right to ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝𝑞. If we connect the remaining points we obtain a polygonal chain that starts at
𝑝, makes a zig-zag line to the right, and ends at 𝑞. The upper convex chain only contains right
turns, so our goal is to remove all left turns.

In partialhull in algorithm 4 we compute the upper convex hull iteratively. Assume that
our last two points in our result is 𝑟 and 𝑢 and we are about to add 𝑣. In fig. 6.5 the triple 𝑟, 𝑢, 𝑣
forms a right turn, so we simply add 𝑣. Next we are about to add 𝑤, but 𝑢, 𝑣, 𝑤 is a left turn, so
we remove 𝑣 again. Now we consider 𝑟, 𝑢, 𝑤 which is still a left turn, so we remove 𝑢, too. Now
we have 𝑝, 𝑟, 𝑤 which is a right turn, and we proceed with the next vertex.

Analysis. The first step of grahamscan is a sort operation, which takes 𝑂(𝑛 log𝑛) time. All the
rest runs in 𝑂(𝑛) time, including the double loop in partialhull(.) The reason for the latter is
the following counting argument: Each vertex 𝑣 ∈ 𝑆 is considered at most twice, because it is
appended once and removed at most once. Hence, the popback operation in the inner loop can
only be executed 𝑂(𝑛) times.

6.4 Lower bound on the time complexity

From the above analysis we learned that Graham scan is – from the perspective of time com-
plexity – essentially sorting points. Interestingly, the opposite is also true: We can sort numbers
using a convex hull algorithm. Assume we would like to sort the numbers 𝑥1, … , 𝑥𝑛. We start
by creating points 𝑝𝑖 = (𝑥𝑖, 𝑥2

𝑖) on a parabola. When we compute the convex hull with any al-
gorithm then every point 𝑝𝑖 is part of conv{𝑝1, … , 𝑝𝑛}, and we just read off the 𝑥𝑖 in sorted order
from the convex hull.

We know from algorithm theory that 𝑂(𝑛 log𝑛) is a lower bound for sorting 𝑛 numbers.6 As-
sume that there is a convex hull algorithm that is faster than 𝑂(𝑛 log𝑛). Computing the points
on the parabola, computing the convex hull, and reading off the points from the result is there-
fore also faster than 𝑂(𝑛 log𝑛). Hence, we sorted numbers in time less than 𝑂(𝑛 log𝑛), which is
a contradiction.

We just proved that any convex hull algorithm takes at least asmuch time as sorting numbers,
namely 𝑂(𝑛 log𝑛) time. We did so by reducing the problem of sorting to the problem of convex
hulls, so a lower bound on sorting must also apply to computing convex hulls. This reduction
technique is a general technique to derive lower bounds on the complexity of problems.

What we also showed is that the Graham scan algorithm is worst-case time optimal in the
sense of asymptotic time complexity.

6.5 Applications

The convex hull is a basic tool in computational geometry. The reconstruction of a (convex)
shape from a set of points is one immediate application, but often we use convex hulls as one
step of other geometric algorithms. For instance, the convex hull can be exploited to compute

6There is no sorting algorithm based on key comparison that takes less than 𝑂(𝑛 log𝑛) time.

66 CHAPTER 6. CONVEX HULL

Algorithm 4 The Graham scan algorithm to compute conv𝑆.
procedure grahamscan(𝑆) ▷ Compute convex hull of point set 𝑆

𝑆 ←sort(𝑆) ▷ Sort points lexicographically by (𝑥, 𝑦)
𝑝 ←𝑆[0] ▷ Left-most input point
𝑞 ←𝑆[−1] ▷ Right-most input point
return partialhull(𝑆, 𝑝, 𝑞) + partialhull(reverse(𝑆), 𝑞, 𝑝)

end procedure

procedure partialhull(𝑆, 𝑝, 𝑞) ▷ Returns the partial convex hull left to ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝𝑞, in-
cluding 𝑝 but excluding 𝑞.

𝑆 ←{𝑣 ∈ 𝑆∶ 𝑝, 𝑞, 𝑣 is a left turn} ▷ Take only points left to ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝𝑞
𝐻 ←[]
for 𝑣 ∈ 𝑆 do

while |𝐻| ≥ 2 and 𝐻[−2], 𝐻[−1], 𝑣 is left turn do
𝐻.popback() ▷ Remove last element from 𝐻

end while
𝐻.append(𝑣)

end for
𝐻.popback() ▷ 𝑞 is last element in 𝐻, remove it
return 𝐻

end procedure

𝑝
𝑞

𝑟 𝑢

𝑣

𝑤

Figure 6.5: The Graham scan algorithm makes sure that while computing the upper part of the
convex hull we only make right turns.

6.5. APPLICATIONS 67

so-called Delaunay triangulations7, which again have particularly nice properties for finite ele-
ment methods, which again are used to solve differential equations, which again are used for
numerical simulation of all kind of physical systems.

As another example, suppose we are given a point set 𝑆 and a convex polygon 𝑃. We would
like to test whether 𝑆 fits into 𝑃. The answer is “yes” if and only if conv𝑆 fits into 𝑃. Hence, we
can compute the convex hull of 𝑆 first and only make the check for the vertices of the convex
hull. If we do many such tests for different 𝑃 then the preprocessing step of computing conv𝑆
is done only once and can be reused for every new polygon 𝑃.

There are two general ideas to learn from the above example: (i) The convex hull can some-
times be used to speed up certain operations and (ii) typically problems are much easier to
solve if the input is in some sense “convex”. For instance, testing whether a point is in a convex
polygon is much simpler than testing whether a point is inside a non-convex polygon. Com-
puting a triangulation of a convex polygon is much simpler than computing a triangulation of a
non-convex polygon. Motion planing for a convex robot is much simpler than for a non-convex
robot.

So assume we want to test whether two complex three-dimensional objects intersect, e.g.,
for collision detection in a 3D racing game. Further assume that most of the time the answer
is “no”. We can speed up the complex task by first testing whether the convex hulls of the
complex objects intersect, which is faster and simpler. Only if the answer is “yes” – we assume
this happens infrequently – we have to make the slower and more complex test for the original
objects.

Software packages like scipy for Python or MATLAB provide convex hull implementations.
The following lines are from a Python interpreter shell. The ConvexHull() implementation is
based on the qhull [2] library:

>>> import numpy as np
>>> from scipy.spatial import ConvexHull
>>> points = np.array([[0, 0], [1, 0], [1, 1], [0, 1], [0.5, 0.5]])
>>> hull = ConvexHull(points)
>>> points[hull.vertices]
array([[0., 0.],

[1., 0.],
[1., 1.],
[0., 1.]])

7One can vertically lift the input points in the plane on a paraboloid one dimension higher, compute the convex hull
there, and project the edges back onto the plane, which gives the Delaunay triangulation. This works for points in ℝ𝑑

lifted to a paraboloid in ℝ𝑑+1. See also section 9.2.2.

68 CHAPTER 6. CONVEX HULL

Chapter7
Range searching

7.1 Introduction

Consider the following task: We are given a large number 𝑛 of points in the plane ℝ2 and we
would like to cleanup the dataset by removing duplicate points. A simple algorithm could iter-
atively construct a clean set 𝐶 of points by starting with the empty set ∅ and iteratively adding a
new point 𝑞 to 𝐶 if the closest point 𝑝 ∈ 𝐶 is farther away than an 𝜀 > 0. Denoting by 𝑑(𝑝, 𝑞) the
Euclidean distance between 𝑝 and 𝑞, we have the following algorithm:

𝐶 ←∅
for 𝑞 ∈ 𝑃 do

if 𝐶 = ∅ ∨ min𝑝∈𝐶 𝑑(𝑝, 𝑞) ≥ 𝜀 then
insert(𝐶, 𝑞)

A core operation in the above algorithm is to compute min𝑝∈𝐶 𝑑(𝑝, 𝑞). We call this a nearest
neighbor search for a query point 𝑞. If we do it the naive way it takes time linear in the size of 𝐶,
which makes the clean up algorithm quadratic time. But we can do much better!

We introduce data structures that can process 𝐶 in order to allow so-called range search-
ing: Given a query region 𝑄 the data structure returns all points of 𝐶 contained in 𝑄. Often
𝑄 is an axis-aligned rectangle, in which case we speak of orthogonal range searching. For our
cleanup algorithm, we now set 𝑄 to a square of side length 2𝜀 and center 𝑞 and instead compute
min𝑝∈𝑄 𝑑(𝑝, 𝑞). Assuming that 𝑄 contains a constant number of points of 𝐶 only, the cleanup
algorithm runs in linear time now.

7.2 Geometric hashing

A simple but in practice often efficient method is geometric hashing. The name is taken from
hash tables and the idea is similar: Instead of considering the full problem, we “hash” the input
data into buckets of smaller size, which allows us to consider the problem only in a single (or
few) buckets. We describe the technique in two dimensions, but it is obvious how to extend it
to higher dimension.

The data structure. So assume that we have a point set 𝐶 of size 𝑛 that fits into some axis-
aligned rectangular region 𝑅. We now partition 𝑅 into cells by a regular 𝑘 × 𝑚 grid, see fig. 7.1
So each cell covers a subregion of 𝑅 and for each cell we maintain a list of objects, namely points
of 𝐶. That is, each point 𝑝 ∈ 𝐶 is registered at the cell in which it resides.

69

70 CHAPTER 7. RANGE SEARCHING

Range searching. A range query for a rectangular range 𝑄 now works as follows: Determine
all cells of the geometric hash that intersect with 𝑄 and report every point in those cells that is
actually contained in 𝑄.

Analysis. The geometric hash is of an advantage if only a significantly smaller fraction of the
set 𝐶 of points needs to be considered. Whether this is the case depends (i) on the distribution
of the point set 𝐶 and (ii) on our choice of 𝑚 and 𝑘.

In a lucky situation the point set 𝐶 is distributed uniformly over 𝑅. Assume further that we
choose 𝑚 and 𝑘 such that the cells are close to a square and 𝑚 ⋅ 𝑘 is linear. Hence, on average
a cell contains a constant number 𝑛/𝑚⋅𝑘 of points and if 𝑄 is small such that it covers only a
constant number of cells then we can answer the range query in constant time. More generally,
the runtime is linear in the size of 𝑄, i.e., in the number of cells intersected by 𝑄.

We do not make 𝑚⋅𝑘 super-linear as we would pay super-linear space and time, even though
they are mostly empty. If 𝑚 ⋅ 𝑘 is sub-linear then we still have linear space complexity, simply to
store all points. However, each cell now contains super-constant many points and hence it takes
super-constant time per cell for a range query.

If the point set is not “nicely” distributed, such that the points concentrate on some cells, we
loose the advantage of geometric hashing. In particular, if some cells contain a linear number of
points thenwe are essentially as good as the naive solution in terms of time complexity whenwe
consider those cells. Fortunately, in many data sets of real-world applications points are quite
nicely distributed.

𝑄

𝑚 columns

𝑘 rows
𝑝′𝑞

Figure 7.1: Geometric hashing for a point set in a rectangular region. It can be used for range
queries for a query range 𝑄 or for nearest neighbor searches for a query point 𝑞. There is a
candidate point 𝑝′ in the cell of the query point 𝑞 but the closest point is different to 𝑝′.

Nearest neighbor search. For a query point 𝑞 ∈ 𝑅 wewould like to find the closest point 𝑝 ∈ 𝐶.
First, we find a candidate point 𝑝′ for being the closest point in 𝐶: We determine the cell of the
query point 𝑞, see the shaded area in fig. 7.1. If this cell contains at least one point then we
determine the point 𝑝′ closest to 𝑞 within this cell. If the cell was empty, we consider the ring
of neighboring cells for a candidate point. If these are also empty, we successively increase the
search radius by adding another ring of cells. At some point we find a candidate 𝑝′ that is the
closest point within the considered cells, unless the entire geometric hash is empty.

Note that 𝑝′ is not necessarily the closest point to 𝑞 of all points in 𝐶, as fig. 7.1 illustrates.
Hence we consider all cells that are intersected by the disk passing 𝑝′ and centered at 𝑞. Within

7.3. HIERARCHICAL DATA STRUCTURES 71

these cells we find the point closest to 𝑞 among all points in 𝐶.

Bounded point query. Some applications, like the initial data cleanup example, are actually
a mix of a nearest neighbor search and a range query in the sense that we are interested in the
nearest neighbor within a (possibly small) query range 𝑄. When 𝑄 is small we can restrict our
nearest neighbor search to those cells and do not need to increase search range if no point has
been found.

7.3 Hierarchical data structures
When the point set 𝐶 is far from being uniformly distributed, the geometric hash suffers from
the fact that grid cells still cover the region 𝑅 in a uniform fashion. So some cells may take
many points while many cells may remain even emtpy. The advantage of geometric hashing is
mitigated when cells contain super-constant many points and entirely erased when cells contain
a linear number of points.

Hence, we seek for a decomposition scheme that is adaptive. Various hierarchical data struc-
tures can do so by refining some tessellation scheme as we go deeper in the hierarchy.

7.3.1 Quadtrees
A quadtree is a tree where a node has either zero or four children. Each node 𝑁 covers a rectan-
gular region 𝑅(𝑁), with the root node covering the original region 𝑅. If a node 𝑁 has children
then 𝑅(𝑁) is split into four quadrants at a split point in the middle of 𝑅(𝑁) and each child node
belongs to one of the four sub-rectangles, see fig. 7.2. The point set 𝐶 is stored in the leaf nodes
𝑁 of the quadtree, i.e, 𝑁 stores the points contained in 𝑅(𝑁). When a certain region contains
more points than other regions then we increase the depth of the hierarchy further and make
therefore the subdivision finer. In this sense, a quad tree is like geometric hashing with a locally
adaptive resolution.

Figure 7.2: A quadtree with bucket capacity 1. Left: the cell decomposition of the quadtree.
Right: The hierarchy of nodes, where each node covers a rectangular cell. The leaf nodes that
contain a point are marked.

When we insert a new point 𝑝 to the quadtree we traverse the quadtree from the root node
down the hierarchy until we reached the leaf node 𝑁 with 𝑝 ∈ 𝑅(𝑁) andwe add 𝑝 to the node 𝑁.
The question arises when to subdivide a leaf node. Similar to B-trees each (leaf) node has a fixed
bucket capacity. If a new point 𝑝 is to be added to the leaf node 𝑁 that has reached its capacity
then 𝑁 is subdivided – we add four children – and 𝑝 is instead inserted into the corresponding

72 CHAPTER 7. RANGE SEARCHING

child node 𝑁′ of 𝑁. It may happen that all points of 𝑁 are actually located in 𝑅(𝑁′) ⊆ 𝑅(𝑁), so
now 𝑁′ has to be subdivided, and so forth. In fig. 7.2 we used a bucket size of 1, but in practice
we would choose it larger.

When we perform a range query for an axis-aligned rectangular query range 𝑄, we recur-
sively traverse the quadtree top down starting at the root node. When we visit a node 𝑁 and
𝑅(𝑁) intersects 𝑄 we have two cases: If 𝑁 is a leaf node then we report all points of 𝑁 that are
contained in 𝑄. If 𝑁 is no leaf node then we recursively repeat for every child 𝑁′ of 𝑁 for which
𝑅(𝑁′) intersects 𝑄.

We can generalize a quadtree directly to ℝ3, but now a node has eight children: One child
for each octant at a split point. The resulting data structure is called an octree.

7.3.2 k-d trees

If we would not operate on the plane but on the one dimensional space ℝ then we could use
ordinary binary trees for range searching. For points in ℝ𝑑 with 𝑑 ≥ 2 we can use ordinary
binary trees only if we choose one particular spatial direction to define a sorting order of the
points, but in general this does not help for orthogonal range searching.

A k-d tree organizes the points of 𝐶 as a binary tree, but we switch the sorting direction level-
wise between the coordinate axes. In fig. 7.3 we illustrate an example for ℝ2. The root node 𝑎 is
in the first level, so it divides the point set into left and right: All points in the first subtree of 𝑎
are geometrically left to 𝑎, which are 𝑏, 𝑑, 𝑒, ℎ. All points in the second subtree are geometrically
right to 𝑎. The node 𝑏 is in the second level, so it divides the remaining point set into below
and above: All points in the first (second) subtree of 𝑏 are below (above) 𝑏. Similar for node 𝑐.
The node 𝑑 is in the third level, so it divides into left and right again: The node ℎ is in the right
subtree of 𝑑 because it is geometrically right of 𝑑.

𝑎
𝑏 𝑑

ℎ

𝑒

𝑐 𝑓

𝑖

𝑔

𝑎

𝑏

𝑒

do
wn

𝑑

ℎ

right

up

left

𝑐

𝑔

do
wn

𝑓

𝑖

lef
t

up

right

Figure 7.3: A k-d tree for a point set in ℝ2. Left: The geometric tessellation scheme of the k-d
tree. Right: The node hierarchy where every other level corresponds to a split along a different
coordinate axis. Dashed lines on the left belong to dashed nodes on the right.

An orthogonal range search for a range 𝑄 is done by traversing the tree. In fig. 7.3 this means
the following: If 𝑎 is in 𝑄 then we report 𝑎. If 𝑄 reaches to the left (or right) of 𝑎 then we
recursively repeat for the left (or right) subtree of 𝑎. At the next level we do the same, only
left/right is replaced by below/above.

The range search is fast if we can drop large subtrees in the traversal of the k-d tree. For
this reason we are interested in balanced k-d trees. If we compute a k-d tree from scratch we
therefore start by sorting the point set by 𝑥-coordinates and choose the median point as root. We

7.3. HIERARCHICAL DATA STRUCTURES 73

then take the left (right, resp.) subset, sort by 𝑦-coordinate, and again take the median as root
of the subtree, and so on.

Recall that for quadtrees we have an initial region 𝑅 in which the points lie, but k-d trees do
not need such a thing. Also the location of the splitting is given by 𝑅 for quadtrees, whereas for
k-d trees the splitting lines are determined by the points of the point set.

74 CHAPTER 7. RANGE SEARCHING

Chapter8
Graphs

Graphs consists of vertices and edges between the vertices. They are a fundamental concept in
computer science. All kind of objects can be depicted as graphs, like networks, relations, depen-
dencies, geometric objects, programs, neural nets and so on. Graph theory is a large discipline.
We will only introduce a small fraction here.

8.1 Basic notions

A graph consists of a finite set 𝑉 of vertices and a finite set 𝐸 of edges, where an edge is a connec-
tion between two vertices 𝑢, 𝑣 ∈ 𝑉. We distinguish between undirected graphs and directed graphs,
depending on whether the edges have a direction of not. A directed graph is often also called
digraph. Undirected graphs have undirected edges {𝑢, 𝑣}. Note that {𝑢, 𝑣} = {𝑣, 𝑢} as orders of el-
ements in sets are irrelevant. Directed graphs have directed edges (𝑢, 𝑣). Note that (𝑢, 𝑣) ≠ (𝑣, 𝑢)
when 𝑢 ≠ 𝑣, because pairs (as 2-tuples) are ordered. More formally, we can define graphs as
follows:

Definition 3. An (undirected) graph 𝐺 is a pair (𝑉, 𝐸) of a finite vertex set 𝑉 and a finite edge
set 𝐸 ⊆ {{𝑢, 𝑣} ∶ 𝑢, 𝑣 ∈ 𝑉}. A directed graph 𝐺 is a pair (𝑉, 𝐸) with a finite vertex set 𝑉 and a
finite edge set 𝐸 ⊆ {(𝑢, 𝑣) ∶ 𝑢, 𝑣 ∈ 𝑉}.

From now on, if we just say graph, we mean undirected graph, unless we made it clear that
wemean both. Some graphs are very special andwe give them names. For instance, the complete
graph 𝐾𝑛 is a graph with 𝑛 vertices and all possible edges, which are 𝑛(𝑛−1)

2 many. Other special
graphs are regular graphs, bipartite graphs, Petersen graph, star graphs, wheel graphs, and
many more.

0

1 2

34

5

(a) Undirected graph

0

1 2

34

5

(b) Directed graph

Figure 8.1: An undirected graph and a directed graph on the vertex set 𝑉 = {0, 1, 2, 3, 4, 5}.

Graphs are typically illustrated by diagrams as in fig. 8.1, where directed edges are illustrated
by arrows and undirected edges by lines. We call this the drawing of a graph. Note that the

75

76 CHAPTER 8. GRAPHS

position of the vertices or geometry of the lines play no role for the graph; these are only details
of one possible drawing. For the graph per se, we are purely interested in the combinatorial
structure of the graph, i.e., whether vertices are connected to each other. In fig. 8.5a we see two
different drawings of the complete graph 𝐾4.

A loop is an edge from a vertex to itself. Often loops are excluded by definition and we
speak of a simple graph to stress this point. If we take a digraph and forget about the edge
directions then we obtain the underlying (undirected) graph. The underlying graph of the digraph
in fig. 8.1b is the one in fig. 8.1a. (Note that the two directed edges (1, 2) and (2, 1) become the
same undirected edge {1, 2}.)

We say that an edge between 𝑢 and 𝑣 is incident to 𝑢 and 𝑣. Vice versa, vertices are adjacent if
there is an edge between them. For an undirected graph we call the number of edges incident to
a vertex 𝑢 the degree 𝑑(𝑢) of 𝑢. (For non-simple graphs, a loop is counted twice for the degree.)
A vertex 𝑣 of degree 𝑑(𝑣) = 0 is called isolated. In fig. 8.1a the vertex 0 is isolated and the vertex
3 has degree 4. We call a graph with every vertex of degree 𝑟 a 𝑟-regular graph. The complete
graph 𝐾𝑛 is a (𝑛 − 1)-regular graph.

The vertex degrees and the number of edges of undirected graphs are in a relationship: When
we insert an edge between 𝑢 and 𝑣 then the degree of 𝑢 and 𝑣 has been incremented. That leads
to the following lemma, also known as the degree formula:

Lemma 1. For an undirected graph (𝑉, 𝐸) it holds that ∑𝑣∈𝑉 𝑑(𝑣) = 2|𝐸|.

In fig. 8.1a the sum is 10. There is also a nice counting argument for this lemma: Consider
placing a dot at each “end” of the edge. How many dots did we place? From one point of view,
we place 2|𝐸| dots because two dots per edge. On the other hand, at each vertex 𝑣 we placed
𝑑(𝑣) dots, so ∑𝑣∈𝑉 𝑑(𝑣) dots in total. Will use a similar argument later for triangulations in
section 8.4.2.

From lemma 1 we also see that if we remove from ∑𝑣∈𝑉 𝑑(𝑣) all vertices of even degree, then
the sum is still even. What remains is an even sum of odd degrees. So the number of summands
must be even. This is called the handshaking lemma:

Lemma 2 (Handshaking lemma). The number of odd-degrees vertices in an undirected graph is even.

The handshaking lemma says that at a party the number of people, shaking hands an odd
number of times, is even. This example also shows a typical way how graphs are used as a
modeling language: There are objects that are in relation to each other and we model this as a
graph with the objects being the vertices and the relation being an edge. If the relation has a
“direction” then we have a digraph, like for dependencies of tasks in a project.

For directed graphs, the indegree 𝑑+(𝑣) of a vertex 𝑣 is the number of edges (⋅, 𝑣) pointing to 𝑣
and the outdegree 𝑑−(𝑣) of a vertex 𝑣 is the number of edges (𝑣, ⋅) pointing away from 𝑣. A vertex
𝑣, where indegree and outdegree are both zero, is called isolated again. In fig. 8.1b the vertex 0
is isolated and 𝑑+(1) = 2 and 𝑑−(1) = 1.

8.2 Paths, cycles and trees

Many algorithms and problems consider different ways to traverse a graph, i.e., to move from
vertex to vertex in specific ways. This is relevant for shortest paths or for depth-first or breadth-
first searches and so on. The following definitions introduce different types of “wandering”
around:

8.2. PATHS, CYCLES AND TREES 77

Definition 4. Let 𝐺 = (𝑉, 𝐸) denote a undirected or directed graph. A walk1 from 𝑣0 ∈ 𝑉 to
𝑣𝑛 ∈ 𝑉 is a vertex sequence (𝑣0, … , 𝑣𝑛) such that for all 0 ≤ 𝑖 < 𝑛 the edge from 𝑣𝑖 to 𝑣𝑖+1 is
an edge in 𝐸. A tour2 is a walk with all edges being pairwise distinct. A path3 is a walk with all
vertices being pairwise distinct, except maybe 𝑣0 and 𝑣𝑛. We call 𝑛 the length of the walk, tour or
path, respectively. A closed walk, tour or path goes form a vertex 𝑣0 to the same vertex 𝑣𝑛 = 𝑣0.

The above definition works for directed and undirected graphs. In the following we will
discuss undirected graphs only. Remember that a tour does not visit an edge twice, just like a
good motorcycle tour. And a path does not visit a place (vertex) twice, in the sense it does not
cross itself. See fig. 8.2 for examples.

1 2

3 4

5 6

(a) Walk

1 2

3 4

5

(b) Tour

1 2

3 4

5

(c) Path

1 2

3 4

5 6

(d) Closed walk

1 2

3 4

5

(e) Closed tour

1 2

3 4

5

(f) Closed path

Figure 8.2: Closed and not closed walks, tours and paths.

By means of a walk we can define what we mean when a graph is connected. That is, we
can go from any vertex to any other vertex by a walk. Actually, if there is a walk from a vertex
𝑢 to a vertex 𝑣 then there is also a path. Whenever the walk crosses itself at a vertex 𝑤 then we
can cut off the detour from 𝑤 to 𝑤 and obtain a shorter walk, until there are not any crossings
anymore. That is, we transform a walk (𝑢, … , 𝑤, … 𝑤, … 𝑣) into a walk (𝑢, … , 𝑤, … , 𝑣) where 𝑤
does not occur multiple times. This leads to the following definition based on paths:

Definition 5. We call a graph (𝑉, 𝐸) connected if for all pair of vertices 𝑢, 𝑣 ∈ 𝑉 there is a path
from 𝑢 to 𝑣.

The graph in fig. 8.1a is not connected; for instance there is no path between vertex 0 and ver-
tex 1. However, if we would remove vertex 0 then the remaining graph is connected. Sometimes
we need to refer to parts of a graph, which we call subgraph. Formally, a graph 𝐺′ = (𝑉′, 𝐸′) is
called a subgraph of a graph 𝐺 = (𝑉, 𝐸) if 𝑉′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸. A cycle is a special subgraph of a
graph, i.e., it is the subgraph “traced out” by a closed path:

Definition 6. A cycle of an undirected graph (𝑉, 𝐸) is a subgraph (𝑉′, 𝐸′) with a vertex set 𝑉′ =
{𝑣1, … , 𝑣𝑛} of 𝑛 vertices such that 𝐸′ = {{𝑣1, 𝑣2}, {𝑣2, 𝑣3} … , {𝑣𝑛−1, 𝑣𝑛}, {𝑣𝑛, 𝑣1}}. We call 𝑛 the
length of the cycle.

1Dt. Wanderung
2Dt. Weg
3Dt. Pfad

78 CHAPTER 8. GRAPHS

Note that a cycle is very similar to but not the same as a closed path: A closed path has a
definite start, but a cycle – as defined as a subgraph – has no such thing as a start. The graph
in fig. 8.1a has only one cycle (𝑉′, 𝐸′) with 𝑉′ = {1, 2, 3} and 𝐸′ = {{1, 2}, {2, 3}, {3, 1}}. But this
graph has three closed paths, all tracing out the same cycle. Also note thatwe could have defined
a cycle as a connected subgraph where every vertex has degree 2.

If the cycle happens to contain all vertices of the graph then we call it a Hamiltonian cycle.
Testing whether a graph has a Hamiltonian cycle is one of the classical NP-complete problems,4
so there is most likely no polynomial algorithm.

If a graph contains no cycle then we call the graph acyclic or a forest. A forest in general
consists of multiple trees, or from a formal point of view, a tree is a connected forest:

Definition 7. A tree is a connected, acyclic graph. We call vertices of degree 1 the leafs or leaf
vertices.

A tree has the property that between any two vertices there is exactly one path: There must
be at least one because it is connected, but there cannot be two. If there would be two then at
some vertex these paths would diverge and rejoin later, and this would form a cycle. In a tree
the number of edges is also given by the number of vertices:

Lemma 3. For a tree (𝑉, 𝐸) holds |𝐸| = |𝑉| − 1.

Afirst simple proof is based on induction following this idea: We construct the tree iteratively
by a sequence of trees 𝑇1, … , 𝑇𝑛, where 𝑇𝑘 has 𝑘 vertices. We start with 𝑇1 having 1 vertex and
0 edges, where the property holds. In each step we let the tree 𝑇𝑘 grow to 𝑇𝑘+1 by adding one
more vertex and an edge, each time keeping the property |𝐸| = |𝑉| − 1 invariant.

Another proof is based on rooted trees, where we turn the tree into a directed graph by choos-
ing one vertex as the root and then orienting all edges in a way that the point away from the
root. So in this rooted tree there is a single path from the root to any vertex; the paths lead way
from the root.5 Observe that every vertex has in-degree 1, except the root.6 So we have as many
non-root vertex as edges, and hence |𝐸| = |𝑉| − 1.

We can actually turn every connected graph 𝐺 into a tree by cleverly removing edges with-
out destroying connectedness but achieving acyclicity: As long as there still exists a cycle we
remove an arbitrary edge of the cycle, and repeat. Removing an edge of a cycle cannot destroy
connectedness. What remains is a tree that “spans” the original 𝐺, which we call spanning tree:

Definition 8. We call a subgraph 𝐺′ = (𝑉′, 𝐸′) of a graph (𝑉, 𝐸) a spanning subgraph if 𝐺′ is
connected and 𝑉′ = 𝑉. A spanning tree of a graph is a spanning subgraph that is a tree.

Following this notation, we could have defined a Hamiltonian cycle as a spanning cycle. By
definition, only connected graphs can have a spanning subgraph, let alone a spanning tree or
a Hamiltonian cycle. Observe that a spanning tree 𝑇 of a graph 𝐺 = (𝑉, 𝐸) cannot have more
edges than 𝐺. The following corollary must therefore hold, otherwise 𝑇 cannot fulfill lemma 3:

Corollary 1. Connected graphs (𝑉, 𝐸) fulfill |𝐸| ≥ |𝑉| − 1.

Spanning trees have numerous applications. One application is with communication net-
works and routing of packets, e.g., for the IP protocol. The communication nodes are linked

4In 1972, Richard Karp has proven for a variety of 21 computational decision problems that they are in the complexity
class NP-complete. Unless the complexity class P would equal NP, there is polynomial time algorithm for any NP-hard
problem, which includes theNP-complete problems. In fact, anyNP-hard problem can be reduced to everyNP-complete
problem.

5All roads lead to Rome, but for rooted trees it is the other way round.
6And the leafs have out-degree 0.

8.2. PATHS, CYCLES AND TREES 79

together in a meshing network. To avoid routing loops, many protocols compute a spanning
tree, most notably the Spanning Tree Protocol and variants of it. Many applications of spanning
trees are actually using minimum spanning trees for weighted graphs, see section 8.3.

The discipline of graph theory surfaced through Leonhard Euler investigating the problem of
the seven bridges of Königsberg, see fig. 8.3a. He was asked to find a route through Königsberg
that would visit each bridge only once.7 In the modern language of graph theory, we ask for a
so-called Euleran tour:

Definition 9. An Eulerian tour of a graph is a tour that visits all edges.8

In fig. 8.3b we model the situation as a graph with every island and bridge being a vertex. Is
there an Eulerian tour for this graph? The answer is “no”. But how can we prove? An algorith-
mic approach would be to come up with an algorithm to exhaustively search for Eulerian tours
and find that the algorithm would yield no solution. A better approach is to learn something
about the problem structure itself.

(a) Seven bridges of Königs-
berg. Based on image by
Merian-Erben, public domain

left right

top

bottom

1 2 3
4

5 6 7

(b) Graph of Königsberg

1 2

3 4

5

(c) A house in one stroke

Figure 8.3: The Königsberg bridge problem an Eulearian tours of graphs.

Say there would be an Eulerian tour (𝑣0, … , 𝑣𝑛) for a graph 𝐺. Then we observe that each
vertex 𝑣1, … , 𝑣𝑛−1 is entered by one edge and exited by another. It may also be revisited later
again, but for each visit we need two different edges. That means that the degree must be even.
Only the degree of the first vertex 𝑣1 and the last vertex 𝑣𝑛 must be odd when the Eulerian tour
is not closed, and it must be even otherwise, i.e., when 𝑣1 = 𝑣𝑛. This property is necessary.
It is also sufficient, because we can essentially construct an Euler tour by traversing the graph
arbitrarily along non-visited edges. Only for non-closed Eulerian tours we have to start at an
odd-degree vertex. This gives us the following lemma:

Lemma 4. A connected graph has a closed Eulerian tour if and only if all vertices are of even degree and
a non-closed Eulerian tour if and only exactly two vertices are of odd degree.

In fig. 8.3b all vertices corresponding to islands have odd degree, so there is no Eulerian tour.
Another commonly known riddle is shown in fig. 8.3c, where we shall draw this house figure in
one stroke without tracing a line twice. That is, we again ask for an Eulerian tour, which exists:
The vertices 1 and 2 are of odd degree, so we start at either one. The shown solution is the tour
(1, 3, 4, 2, 3, 5, 4, 1, 2), but we can find other solutions by starting at any odd-degree vertex and
simply continuing with any unvisited edge until we reach the other odd-degree vertex.

7The Königsberg bridge problem also marks the start of topology, which is in some sense geometry without precise
lengths and locations of objects. The length of a bridge is irrelevant for this problem.

8Eulerian tours are often also called Eulerian paths in literature.

80 CHAPTER 8. GRAPHS

Riddles like in fig. 8.3 can be considered to be part of so-called recreational mathematics. But
Eulerian tours also have industrial applications, like assembling DNA fragments, CMOS circuit
design and unfolding polyhedral surfaces [6], e.g., for CAD/CAM applications.

8.3 Weighted graphs

The edges of a graph put vertices into relation.9 Often these relations carry some quantity, i.e.,
the time to travel between cities, the bandwidth between network nodes, or the probabilities
between events in a Bayesian network. We call this quantity the weight and formalize it by a
function 𝑤∶ 𝐸 → ℝ on the edge set 𝐸.

Definition 10. A weighted graph (𝐺, 𝑤) is a pair of a graph 𝐺 = (𝑉, 𝐸) and a weight function
𝑤∶ 𝐸 → ℝ. Likewise we define a weighted digraph.

Sometimes wewant to stress the point that we put weights on the edges and speak of an edge-
weighted graph. A weighted digraph is also called network. It is also convenient to write 𝑤(𝑢, 𝑣)
instead of 𝑤((𝑢, 𝑣)) when there is an edge from 𝑢 to 𝑣. What follows holds for undirected and
directed graphs likewise. We draw weighted graphs by labeling the edges by their weight, like
in fig. 8.4. Depending on the application a weight of zero is often equivalent to an edge being
absent.

3

2 2
5

11 3

2

8

0.5

3

2 1

2.5 2 2 2 2

7 3.5

1
.

Figure 8.4: The rooted tree of shortest paths by Dijkstra. The source is marked red.

Shortest paths. Wecan now take different notionswe know for undirected anddirected graphs
and ask for minimum-weight variants of it. Most prominently, we might be interested in a walk
from a vertex 𝑢 to a vertex 𝑣 of minimum total weight. More formally, for a walk (𝑣0, … , 𝑣𝑛) we
call ∑𝑛

𝑖=1 𝑤(𝑣𝑖−1, 𝑣𝑖) the length of the walk.
For most applications it makes sense to have the weights being non-negative. If weights can

be negative then weight-minimizing instances, like walks, may not exist. For instance, if there
is a cycle of negative total weight, then a weight-minimizing walk would keep spinning within
this cycle indefinitely to add up negative lengths.

Let us assume weights are all positive. If there is walk between 𝑢 and 𝑣 then there is also a
walk ofminimum length. Thisminimum-lengthwalk is actually a path: If thewalkwould revisit
a vertex 𝑧 then it cannot be of minimum length, because we could cut off the detour from 𝑧 to

9There is actually a one-to-one correspondence between diagraphs and relations. Formally, a relation 𝑅 between a
set 𝐴 and a set 𝐵 is a subset of the Cartesian product of 𝐴 and 𝐵, i.e., 𝑅 ⊆ 𝐴 × 𝐵. Hence, for a digraph (𝑉, 𝐸) on a
vertex set 𝑉, we can see 𝐸 ⊆ 𝑉 × 𝑉 as a relation, and vice versa. Symmetric relations, i.e., (𝑎, 𝑏) ∈ 𝑅 ⇔ (𝑏, 𝑎) ∈ 𝑅 for
all (𝑎, 𝑏) ∈ 𝐴 × 𝐵, correspond to undirected graphs.

8.3. WEIGHTED GRAPHS 81

Algorithm 5 Dijkstra’s algorithm for one-source 𝑢 all-destinations shortest paths.
procedure dijkstra(vertex set 𝑉, weights 𝑤, source vertex 𝑢)

for 𝑣 ∈ 𝑉 do
𝑑𝑖𝑠𝑡[𝑣] ←∞ ▷ Distance of 𝑣 to current tree
𝑝𝑟𝑒𝑣[𝑣] ←Null ▷ Predecessor in rooted tree

end for
𝑑𝑖𝑠𝑡[𝑢] ←0 ▷ Distance to source 𝑢
for 𝑣 ∈ 𝑉 do ▷ Initialize priority queue 𝑄

𝑄.insert(𝑣, 𝑑𝑖𝑠𝑡[𝑣])
end for
while 𝑄 not empty do

𝑢 ←𝑄.pop() ▷ Get vertex 𝑢 closest to tree
for neighbors 𝑣 of 𝑢 do ▷ Check for a shortcut to 𝑣 via 𝑢

if 𝑣 ∈ 𝑄 then ▷ For unprocessed vertices 𝑣
𝑑 ←𝑑𝑖𝑠𝑡[𝑢] + 𝑤(𝑢, 𝑣)
if 𝑑 < 𝑑𝑖𝑠𝑡[𝑣] then ▷ There is a shortcut of distance 𝑑

𝑑𝑖𝑠𝑡[𝑣] ←𝑑
𝑝𝑟𝑒𝑣[𝑣] ←𝑢
𝑄.update(𝑣, 𝑑𝑖𝑠𝑡[𝑣])

end if
end if

end for
end while
return dist, prev

end procedure

𝑧 and reduce the length.10 Hence, we call a minimum-length walk between 𝑢 and 𝑣 the shortest
path.11 Furthermore, we call largest shortest path between any pair of vertices the diameter of the
graph.

Shortest paths have many applications, not the least for vehicle routing in street networks.
A well-known algorithm for the computation of shortest paths is the Dijkstra algorithm. What
Dijkstra’s algorithm does is actually computing all shortest paths from one source to all destina-
tions. Dijkstra does this in a way that gives rise to a rooted tree with the source vertex as root,
see fig. 8.4. In fact, the algorithm computes this tree by iteratively adding a vertex to the tree that
has minimum distance to the source vertex. We encode this tree by remembering for each vertex
𝑣 its predecessor. The algorithm is given in pseudo code in algorithm 5. Depending on the data
structure we use for the priority queue and for the graph, we obtain different time complexities
of the algorithm, with the simplest versions being in 𝑂(|𝑉|2). All we said about shortest paths
works for undirected and directed graphs alike.

Minimum spanning trees. For undirected graphs, also spanning trees can be considered in a
weight-minimizing fashion: Given a weighted graph (𝐺, 𝑤), the weight of a subgraph (𝑉′, 𝐸′) of
𝐺 is defined as its total weight ∑𝑒∈𝐸′ 𝑤(𝑒). Then we can define a minimum spanning tree (MST)
of a weighted graph (𝐺, 𝑤) as a spanning tree of 𝐺 of minimum weight. There are many ap-

10Note that we assumed positive weights, not just non-negative weights. If weights can be zero then there could be a
cycle of zero total weight, and a shortest walk could revisit vertices.

11In literature, often what we call a “walk” is called a “path”, so double check the definition of a path.

82 CHAPTER 8. GRAPHS

plications of minimum spanning trees, like hierarchical clustering, broadcasting in computer
networks, image registration and segmentation and many more.

We can incrementally construct a minimum spanning tree by adding a vertex to the current
tree that by an edge ofminimumweight. This is calledPrim’s algorithm. This is similar toDijkstra,
but for Dijkstra we consider the minimum distance to the source vertex, not to any vertex of the
current tree. On the other hand, Kruskal’s algorithm considers each vertex of being a trivial tree,
and thenmerges trees to form larger trees viaminimumweight edges until only one tree remains.

Traveling salesperson problem. A famous problem in computer science is the traveling sales-
person problem (TSP) .12 A salesperson wants to visit every vertex in a graph exactly once in a
closed walk of minimum length. That is, TSP asks for the minimum-weight Hamiltonian cycle,
which is again NP-hard.

8.4 Planar graphs and geometric graphs
The concrete drawing of a graph was irrelevant so far. That is, the positions of the vertices and
the geometric shapes of the edges were irrelevant. In the following, we will subsequently add
more structure concerning the drawing of graphs.

8.4.1 Planar graphs
If we can draw a graph in the plane in a way such that edges do not cross then we call this
a planar graph and such drawing is called a planar embedding of the graph into the plane. The
complete graphs 𝐾𝑛 are planar for 𝑛 ≤ 4 and are not planar for 𝑛 ≥ 5. In fig. 8.5a we see
two planar embeddings of the complete graph 𝐾4. Planar graphs and planar embeddings have
many applications, e.g., for wire routing of a circuit in PCB layouting. Testing whether a graph
is planar or not is difficult.

If we consider a convex polyhedron13 then the vertices and edges of the polyhedron form a
graph, the so-called edge graph of the convex polyhedron. In fig. 8.5b we illustrate the edge
graphs of the tetrahedron and the cube. One can prove that edge graphs of convex polyhedra
are planar.14

If we consider a planar embedding of a planar graph 𝐺 then the plane is tessellated into faces
formed by the edges, see also fig. 8.5. The main theorem on planar graphs is given by Euler’s
formula15:

Theorem 1. For any connected, planar graph with 𝑣 vertices, 𝑒 edges and 𝑓 faces it holds that

𝑣 − 𝑒 + 𝑓 = 2. (8.1)

Herewe also count the unbounded, infinitely large face as an face. It is called the outer face. In
fig. 8.5a the outer face is a triangle in both cases and in fig. 8.5b the outer face is a quadrilateral.
As an example, the edge graph of a cube has 8 vertices, 12 edges and 6 faces and 8 − 12 + 6 = 2
and the edge graph of a tetrahedron has 4 vertices, 4 faces and 6 edges and 4 − 6 + 4 = 2.

12It used to be called traveling salesman problem.
13A convex polyhedron is the convex hull of finitely many points in ℝ3, and likewise for a 𝑑-dimensional convex

polyhedron in ℝ𝑑.
14Actually, Steinitz’ theorem says that a graph is the edge graph of a convex polyhedra if and only if it is 3-connected

and planar. That is, Steinitz’ theorem completely characterizes the edge graphs of convex polyhedra. A graph is 𝑘-
connected when the removal of any 𝑘 vertices keeps the graph connected.

15Dt. Euler’s Polyedersatz.

8.4. PLANAR GRAPHS AND GEOMETRIC GRAPHS 83

𝑎 𝑏

𝑐𝑑

𝑎

𝑏

𝑐

𝑑

(a) Two planar embeddings (b) Edge graph of the cube

Figure 8.5: Planar graphs have a crossingfree drawing. Left: Two different embeddings of the
same graph with four vertices 𝑎, 𝑏, 𝑐, 𝑑. It is the edge graph of the tetrahedron. Right: The edge
graph of the cube with six quadrilateral faces.

In eq. (8.1) we see a certain symmetry concerning vertices and faces. Indeed, from a planar
embedding of a graph 𝐺, we can form a dual graph 𝐺′ by turning vertices in faces and vice versa:
Each face 𝑓 of 𝐺 gives rise to a vertex 𝑣′ of 𝐺′ and if two faces 𝑓 , 𝑔 in 𝐺 share an edge then we
place an edge in 𝐺′ between the vertices forming the duals of 𝑓 and 𝑔. In this sense, we can think
of “flipping” the edges of 𝐺 to form the edges of 𝐺′. The dual of the dual of 𝐺 is 𝐺 again.16 In
fig. 8.6 we illustrated the dual graphs of fig. 8.5a. The dual of the cube graph is an octahedron
graph. The dual of the tetrahedron graph is a tetrahedron graph; in this sense the tetrahedron
is dual to itself. 17

(a) Tetrahedron (b) Cube

Figure 8.6: Dual graphs of (planar embeddings of) graphs in fig. 8.5a.

Dual graphs have many applications. One approach to compute unfoldings of polyhedral
solids is to search for certain spanning trees of the dual of the edge graph. In fig. 9.4 we have the
Delaunay triangulation as the dual of the Voronoi diagram, so we can easily compute the one
from the other. But also for a mathematical analysis this duality is very useful. For instance, the
regular structure of the Delaunay triangulation translates to regular properties of the Voronoi
diagram (and vice versa) through duality.18

16This is an essential property of duality. For instance, we consider a point-line duality for the so-called Hough trans-
form. Also here the dual of a dual is the original again.

17The dual of the icosahedronwould be the dodecahedron. That is all five platonic solids have platonic solids as duals.
18Triangles in the Delaunay triangulation correspond to degree-3 vertices in the Voronoi diagram. By enforcing a

triangle as outer face as well, we have a strong combinatorial property through lemma 5.

84 CHAPTER 8. GRAPHS

8.4.2 Geometric graphs
For planar graphs it matters that there is a planar drawing, a planar embedding, but the drawing
itself is not of amain interest. We can addmore geometry to graphs and also fix thewaywe draw
the graph and speak of geometric graphs.

Euclidean graph. A natural way to pull in geometry to graphs is by embedding vertices into
the plane and for each edge between a vertex 𝑢 and vertex 𝑣 we assign a weight equal to the
Euclidean distance 𝑑(𝑢, 𝑣) between the vertices. We call this a Euclidean graph. The complete
Euclidean graph is then the complete, Euclidean graph of a vertex set given by a finite point set
𝑝1, … , 𝑝𝑛 ∈ ℝ2.

The Euclidean minimum spanning tree (EMST) of a finite point set 𝑝1, … , 𝑝𝑛 ∈ ℝ𝑛 is then the
minimum spanning tree of the complete Euclidean graph. See fig. 8.8 for an example. Likewise
the Euclidean traveling salesperson problem (ETSP) is then the traveling salesperson problem on
the complete Euclidean graph. See fig. 8.7 for an example. We will revisit EMST and ETSP later
in section 9.3.2 after we introduced Delaunay triangulations.

𝑎 𝑏

𝑐𝑑

𝑎

𝑏

𝑐

𝑑

Figure 8.7: The Euclidean minimum spanning trees of the point sets in fig. 8.5.

𝑎 𝑏

𝑐𝑑

𝑎

𝑏

𝑐

𝑑

Figure 8.8: Solutions to the Euclidean TSP for the point sets in fig. 8.5.

Planar straight-line graph. Another prominent geometric graph is the planar straight-line graph
(PSLG): We embed the vertices of the graph in the Euclidean plane, draw the edges as non-
crossing straight-line segments. The PSLG as a weighted graph is a Euclidean graph, i.e., we
assign the Euclidean lengths of the edges as weights. In fig. 8.5b we see a PSLG. As the weights
are given by the Euclidean distance, the weights need not be explicitly displayed in a figure but
are given implicitly.

A triangulation is a special PSLG. Given a set of points 𝑆 ∈ ℝ2, we define a triangulation
of 𝑆 as a maximal planar subdivision of the convex hull of 𝑆. Note that 𝑆 may possess many
triangulations.19 The Delaunay triangulation is a special triangulation and will be introduced in
section 9.1.2. See fig. 9.4 for an example.

19The number of triangulations is typically difficult to count. In the simple case of 𝑛 + 2 points in convex positions,
there are 𝐶𝑛 many triangulations, where 𝐶𝑛 = 1

𝑛+1 (2𝑛
𝑛) is the 𝑛-th Catalan number, which quickly becomes huge, i.e.,

𝐶10 = 16796, 𝐶20 = 6564120420, 𝐶30 = 3814986502092304.

8.4. PLANAR GRAPHS AND GEOMETRIC GRAPHS 85

All faces of a triangulation, except maybe the outer face, are triangles. Assume that also the
outer face is a triangle. Then every edge belongs to two faces and every face has three edges.
Draw a little dot on either side of an edge, then you have placed 2𝑒 dots. On the other hand,
each triangle received three dots, one from each edge, so we also placed 3𝑓 dots and therefore
2𝑒 = 3𝑓. (We used a similar counting argument for the degree formula.) If we plug this into
Euler’s formula we get

6 = 3𝑣 − 3𝑒 + 3𝑓 = 3𝑣 − 3𝑒 + 2𝑒 = 3𝑣 − 𝑒

and therefore

𝑒 = 3𝑣 − 6.

Note that this only holds if all faces, including the outer face, form triangles, as in fig. 8.5a.
However, since triangulating a non-triangular face only adds edges but no vertices, we obtain
by eq. (8.1) for any planar graph the following:

Lemma 5. For any connected, planar graph with 𝑣 ≥ 3 vertices and 𝑒 edges we have 𝑣 − 1 ≤ 𝑒 ≤ 3𝑣 − 6,
with the first equality for a tree and the second equality if all faces are triangles.

(Recall that 𝑒 ≥ 𝑣 − 1 is by corollary 1.) In particular, planar graphs possess at most a
linear number of edges! Many algorithms for graphs have a time complexity that depends on
the number of edges; they are faster on graphs with less edges. Hence, they perform better on
planar graphs than arbitrary graphs. Prime examples are the computation of shortest paths20 or
minimum spanning trees21.

Based on the above inequality we can also bound the number of faces in a connected, planar
graph, as 𝑓 = 𝑒 − 𝑣 + 2 ≤ 3𝑣 − 6 − 𝑣 + 2 = 2𝑣 − 4.

Corollary 2. For any connected, planar graph 𝐺 with 𝑣 ≥ 3 vertices and 𝑓 faces we have 1 ≤ 𝑓 ≤ 2𝑣 − 4.
Iff 𝐺 is a tree we have 𝑓 = 1 and iff all faces of 𝐺 are triangles we have 𝑓 = 2𝑣 − 4.

If 𝐺 is a tree then there are no cycles and the only face is the outer face. If the connected,
planar 𝐺 is not a tree then 𝐺 contains a cycle and then we have 2 ≤ 𝑓 ≤ 2𝑣 − 4. Then both
equalities hold, i.e, 2 = 𝑓 = 2𝑣 − 4, when 𝐺 is a single triangle; then it is a cycle and all faces are
triangles.

20Take for instance Dijkstra’s algorithm.
21Take for instance Kruskal’s algorithm.

86 CHAPTER 8. GRAPHS

Chapter9
Voronoi diagram and Delaunay

triangulation
We would like to add a new power plant in a country to lower the load of the existing ones. To
this end we would like to estimate the load of a power plant: We assume that households are
uniformly distributed over the country and a household is served by its nearest power plant. So
the load of a power plant is proportional to area of households where this plant is nearest to.
What we receive is a geometric setup as illustrated in fig. 9.1, where the points are the power
plants and the polygonal tessellation of the plane tells which households are served by which
power plant. For instance, all households in the shaded, thick polygon are served by 𝑝.

𝑝

Figure 9.1: Voronoi diagram of points. The Voronoi region of 𝑝 is shaded in gray and its bound-
ary, the Voronoi polygon, is depicted thick.

9.1 Definition and properties

9.1.1 Voronoi diagram of points
A very similar problem formulation is known as the post office problem: The points in the plane,
which are called sites, are post offices. A client posts a letter at its nearest post office, so for a post

87

88 CHAPTER 9. VORONOI DIAGRAM AND DELAUNAY TRIANGULATION

office 𝑝 its service region is the set of points where 𝑝 is the nearest neighbor.
This leads us to the definition of a Voronoi diagram of a set 𝑆 of point sites 𝑠1, … , 𝑠𝑛 in the

Euclidean plane. For a site 𝑠 ∈ 𝑆 we define its Voronoi region VR(𝑠) as the nearest-neighbor
region of 𝑠 among 𝑆:

VR(𝑠) = {𝑝 ∈ ℝ2 ∶ 𝑑(𝑝, 𝑠) ≤ 𝑑(𝑝, 𝑠′) ∀𝑠′ ∈ 𝑆}. (9.1)

If the notation is ambiguous on 𝑆 thenwe add 𝑆 as subindex andwriteVR𝑆(𝑠). For the Euclidean
plane the distance 𝑑 is given by

𝑑(𝑝, 𝑞) = ‖𝑝 − 𝑞‖ = √(𝑝𝑥 − 𝑞𝑥)2 + (𝑝𝑦 − 𝑞𝑦)2.

In an actual implementation we do not compute 𝑑(𝑝, 𝑠) ≤ 𝑑(𝑝, 𝑠′) but the equivalent comparison
𝑑(𝑝, 𝑠)2 ≤ 𝑑(𝑝, 𝑠′)2 in order to get rid of the square root in the numerical computations, which
is slow and inaccurate. We define the Voronoi polygon VP(𝑠) as the boundary of VR(𝑠), which is
denoted by VP(𝑠) = 𝜕VR(𝑠).

Definition 11. The Voronoi diagram V(𝑆) of a set 𝑆 = {𝑠1, … , 𝑠𝑛} of sites in ℝ2 is defined as

V(𝑆) = ⋃
𝑠∈𝑆

VP(𝑠).

The Voronoi diagram has many very nice geometric properties. First we note that we can
rephrase eq. (9.1) as

VR(𝑠) = ⋂
𝑠′∈𝑆
𝑠′≠𝑠

𝐻(𝑠, 𝑠′) (9.2)

with

𝐻(𝑠, 𝑠′) = {𝑝 ∈ ℝ2 ∶ 𝑑(𝑝, 𝑠) ≤ 𝑑(𝑝, 𝑠′)}.

The point set 𝐻(𝑠, 𝑠′) is a half plane with the bisector between 𝑠 and 𝑠′ as boundary, see fig. 9.2.
Each point 𝑥 on the bisector is equidistant to 𝑠 and 𝑠′. From eq. (9.2) we learn that every Voronoi
region is the intersection of half planes and therefore a convex polygon. However, some of them
might be unbounded, i.e., infinitely large.

𝑠

𝑠′

𝐻(𝑠, 𝑠′)
𝑥

Figure 9.2: The half plane 𝐻(𝑠, 𝑠′) with the bisector between 𝑠 and 𝑠′ as boundary.

The Voronoi diagram V(𝑆) tessellates the plane into convex polygonal cells1. We call the
edges ofV(𝑆) theVoronoi edges and the vertices ofV(𝑆) theVoronoi nodes. In fig. 9.3a we illustrate
a Voronoi node 𝑛, the incident Voronoi edges and the sites 𝑠𝑖 of the incident Voronoi regions.
Note that 𝑛 lies on the Voronoi edge and bisector between 𝑠1 and 𝑠2, so 𝑛 is equidistant to both
sites. But this also holds for all other Voronoi edges. Hence, a Voronoi node is equidistant to all
sites of incident Voronoi regions.

1In some literature the Voronoi region is also called Voronoi cell.

9.1. DEFINITION AND PROPERTIES 89

𝑛

𝑠1

𝑠2

𝑠3

(a) Voronoi nodes.

𝑝3

𝑝2

𝑝1

(b) Nearest neighbors.

Figure 9.3: Left: A Voronoi node 𝑛 has three or more incident Voronoi edges. All sites 𝑠1, … , 𝑠𝑘
of the incident Voronoi regions are equidistant to 𝑛. Right: The points 𝑝1, 𝑝2, 𝑝3 have one, two or
more than two nearest neighbors in 𝑆.

Every point 𝑝 in the plane has either one nearest neighbor 𝑠 ∈ 𝑆 or two nearest neighbors
𝑠1, 𝑠2 ∈ 𝑆 or more than two. In the first case 𝑝 lies in the interior of VR(𝑠), in second case 𝑝 lies
on a Voronoi edge and in the third case 𝑝 lies on a Voronoi node, see fig. 9.3b.

9.1.2 Delaunay triangulation
We can also interpret V(𝑆) as a planar graph, a PSLG in fact. Hence, we can consider the dual
graph of V(𝑆) as in fig. 9.4. What we obtain is the so-called Delaunay triangulation D(𝑆) of the
point set 𝑆. We call the line segments of the Delaunay triangulation the (Delaunay) edges.

Note that the Delaunay triangulation contains the convex hull of 𝑆 as edges. Every Voronoi
edge corresponds to a Delaunay edge. The infinitely long Voronoi edges are the Delaunay edges
of the convex hull.

TheDelaunay triangulation is a triangulationwith particularly nice properties. Ifwe consider
the incident Voronoi edges to a Voronoi node 𝑛 then each of them gives rise to a Delaunay edge.
Hence, every Voronoi node gives rise to a Delaunay triangle, see fig. 9.5a.

In fact, if a Voronoi node is of higher degree then three – becausemore than four sites 𝑠1, … , 𝑠𝑘
are cocircular – then we do not obtain a triangle but a regular 𝑘-gon and we have to triangulate
this 𝑘-gon (in an arbitrary way). Only in this case the Delaunay triangulation is not unique.

Another nice property is that the circumcircle of a Delaunay triangle does not contain any
sites 𝑠 in its interior. If this would be the case, the Voronoi node 𝑛 to the Delaunay triangle
would not have its defining sites as nearest neighbors but 𝑠, see fig. 9.5a. This property leads to a
different definition of theDelaunay triangulation: For any three sites 𝑠1, 𝑠2, 𝑠3 whose circumcircle
is empty we add a Delaunay triangle.2

In fig. 9.5b the left triangulation is not Delaunay for exactly this reason. However, we can
perform an edge flip operation: We remove an edge, obtain a convex 4-gon, and re-triangulate
this 4-gon the other way. If the resulting 4-gon would not be convex then re-triangulating it the
otherwaywould destroy planarity, sowe can only do an edge flip if the resulting 4-gon is convex.
It can be shown that a triangulation of 𝑛 points can be turned into any other triangulation – in
particular the Delaunay triangulation – using only 𝑂(𝑛2) edge flip operations.

2We have a special case if 𝑘 ≥ 4 sites are cocircular. In such situations we have to triangulate the resulting 𝑘-gon.

90 CHAPTER 9. VORONOI DIAGRAM AND DELAUNAY TRIANGULATION

Figure 9.4: The Delaunay triangulation D(𝑆) of a point set 𝑆 is the dual graph of the Voronoi
diagram V(𝑆).

𝑛

𝑠1

𝑠2

𝑠3

(a) A triangle for each node.

𝑠1

𝑠2

𝑠3

𝑠4 𝑠1

𝑠2

𝑠3

𝑠4

(b) Edge flip to obtain Delaunay triangles.

Figure 9.5: The circumcircles of Delaunay triangles are empty. Left: For every Voronoi node 𝑛
there is a Delaunay triangle of the defining sites. Right: The triangle (𝑠1, 𝑠2, 𝑠4) is not Delaunay,
but flipping the edge (𝑠1, 𝑠4) creates Delaunay triangles.

The edge flip operation in fig. 9.5b makes the triangles more acute, closer to equilateral trian-
gles. In fact, it can be shown that the Delaunay triangulation is optimal in the sense that among
all triangulations the smallest angle over all its triangles is maximized. This makes the Delaunay
triangle particularly “aesthetic” and, for instance, interesting for finite element methods.

9.2 Computation

9.2.1 Incremental construction of Voronoi diagrams

A simple algorithm to compute Voronoi diagrams is to construct it incrementally. If 𝑆 contains
at most three points, the Voronoi diagram is simple and looks like fig. 9.3a. If 𝑆 contains more
than three points, we can start with the first three, and iteratively add the remaining points.

So the problem we have to solve is the following: Given V(𝑆) of a site set 𝑆, how to compute

9.2. COMPUTATION 91

𝑠
𝑠1

𝑠2
𝑒1

𝑒2

Figure 9.6: Inserting a site 𝑠 creates a new Voronoi polygon VP(𝑠) and removes the dashed line
structure.

V(𝑆 ∪ {𝑠}) for a new site 𝑠 ∉ 𝑆? Let us denote by 𝑆+ the new site set 𝑆 ∪ {𝑠}. So how can
we modify V(𝑆) in order to obtain V(𝑆+)? At the end V(𝑆+) has to contain a new Voronoi
polygonVP𝑆+(𝑠). The bisectors between the old sites remain unchanged, somanyVoronoi edges
well remain intact, some may be shortened, and some may be entirely deleted to clear space for
VP𝑆+(𝑠). In fig. 9.6 we illustrate this situation.

Circular scan. Let 𝑠1 ∈ 𝑆 be the3 nearest neighbor of 𝑠 among the old site set 𝑆. Since 𝑠 ∈
VR𝑆(𝑠1), some parts of the old Voronoi region VR𝑆(𝑠1) of 𝑠1 will be part of the new Voronoi
region VR𝑆+(𝑠) of 𝑠 and so the old region has to be truncated. More precisely, we consider the
bisector between 𝑠1 and 𝑠 and obtain an edge 𝑒1 of the new Voronoi polygon VP𝑆+(𝑠). The edge
𝑒1 ends at an old Voronoi edge between 𝑠1 and a neighboring site 𝑠2. The old Voronoi region
VR𝑆(𝑠2) is therefore also truncated by the new Voronoi region of 𝑠, and we can again construct
a Voronoi edge 𝑒2 on the bisector of 𝑠 and 𝑠2. We can keep doing that and eventually end up at
𝑠1 again, because we know that VP𝑆+(𝑠) is a convex polygon.

We call this traversal scheme of V(𝑆) a circular scan around 𝑠. After we circularly constructed
the new Voronoi polygon V𝑆+(𝑠) and removed the parts of the Voronoi edges enclosed by new
new polygon, we obtain the new Voronoi diagram V(𝑆+).

Topology-oriented construction. The circular scan involvesmanygeometric constructions that
build upon each other: We compute a bisector line, intersect it with a Voronoi edge, construct
a new point, and keep doing so in order to construct a whole sequence of new Voronoi edges
𝑒1, 𝑒2, … , 𝑒𝑘. In each step we accumulate numerical errors due to geometric computations, which
are based on floating-point arithmetic.4 Due to numerical inaccuracies the last edge 𝑒𝑘 will not
exactly meet with the first edge 𝑒1. In fact, we may end up in a spiral of new Voronoi edges that
actually fails to meet 𝑒1 again.

Sugihara [23] introduced a technique called topology-oriented computation. The general, ab-
stract idea is to avoid geometric computations – and the continuous world as a whole – as far as
possible and instead rely on discrete, integer-based information. In case of the incremental con-
struction of Voronoi diagrams, we observe that the structure to be removed from V(𝑆) is always

3In general, there could be many nearest neighbors if 𝑠 sits on an edge or node of V(𝑆). In this case we take any such
nearest neighbor and call it 𝑠1.

4There are alternatives to floating-point arithmetic, like Exact Geometric Computation (EGC) based on libraries like
Core or LEDA.

92 CHAPTER 9. VORONOI DIAGRAM AND DELAUNAY TRIANGULATION

a tree, i.e., connected and free of cycles. Roughly speaking, if the dashed structure in fig. 9.6
would contain a cycle then a whole Voronoi polygon would be removed, which is impossible as
every site has a Voronoi region.

We can exploit this fact for a topology-oriented insertion of a new site 𝑠: We again consider
the site 𝑠1 whose Voronoi region VR𝑆(𝑠1) contains 𝑠 and find a Voronoi node of VP𝑆(𝑠1) that is
closer to 𝑠 than 𝑠1, which always exist. This node is definitely to be removed. Now we traverse
V(𝑆) and mark all nodes that are closer to 𝑠 than their defining sites. Voronoi edges with both
nodes marked are removed. Voronoi edges with only one marked node are truncated (partially
removed). The key is now that if we would remove a whole cycle of Voronoi edges due to some
numerical errors thenwe proactively avert that by breaking this cycle up at reasonable locations.
That is, we enforce to remove a tree structure only. Therefore we help the implementation to
produce topologically correct results; the implementation is guided by topological properties of
Voronoi diagrams. Sugihara [23] demonstrated this technique for Voronoi diagrams, but the
underlying idea is a powerful technique in general:

Avoid geometric and continuous computations, leverage topological and discrete in-
formation.

9.2.2 Complexity and implementations
Interpreting the Delaunay triangulation and the Voronoi diagram as a planar graph gives us
some combinatorial properties that important regarding the computational complexity. First,
by corollary 2, we know that there are only a linear number of Delaunay triangles. By duality,
there are only a linear number of Voronoi nodes. And by lemma 5 there are only linear number
of Voronoi edges (or Delaunay edges).

This insight is important for the time complexity of algorithms and space complexity to store
Voronoi diagrams and Delaunay triangulations. In particular, in can be shown that if we con-
structV(𝑆) incrementally and choose the points in a random fashion then the expected runtime is
𝑂(𝑛 log𝑛). However, there are also deterministic 𝑂(𝑛 log𝑛) algorithms. Based on V(𝑆) we can
compute D(𝑆) in 𝑂(𝑛) time.

The qhull library – which is used by scipy and MATLAB – can actually compute V(𝑆) and
D(𝑠) by means of the convex hull in higher dimensions. It can be shown that if we lift the point
set 𝑆 intoℝ3 by vertically lifting themon a paraboloid then their convex hull forms a polyhedron,
whose edges projected back onto the plane gives the D(𝑆).

9.3 Applications

9.3.1 Terrain interpolation

Assume we are interested in some function 𝑓 ∶ 𝐷 → ℝ, where 𝐷 ⊆ ℝ2 is some domain. We can
interpret 𝑓 is a scalar field over 𝐷. Take for example the temperature distribution or the height
profile in a geometric map. Let us assume that the function 𝑓 is not given explicitly, but only at
certain points 𝑝1, … , 𝑝𝑛 ∈ 𝐷 and we would like to compute 𝑓 (𝑝) for some arbitrary 𝑝 ∈ 𝐷. In
other words, wewould like to interpolate 𝑓. In the followingwe denote by 𝑦𝑖 the value associated
to 𝑝𝑖.

From section 4.4.1 we recall that a piecewise linear function is a simple solution to this prob-
lem. However, in contrast to fig. 4.3a we nowwe deal with a piecewise linear surface as function
graph of 𝑓. In fact, an even simpler solution would be a piecewise constant interpolation, a two-
dimensional step function in some sense, but here again we would need to associate to each

9.3. APPLICATIONS 93

point 𝑝𝑖 a neighborhood to which we assign the value 𝑦𝑖. For both approaches, the piecewise
constant and the piecewise linear interpolation, we can use the Voronoi diagram resp. the De-
launay triangulation.

(a) Piecewise constant interpolation

𝑝𝑖

(𝑝𝑖, 𝑦𝑖)

(b) Piecewise linear interpolation

Figure 9.7: Approximating a function 𝑓 ∶ 𝐷 → ℝ over a domain 𝐷 ⊂ ℝ2 given at a point set
𝑃 = {𝑝1, … , 𝑝𝑛} with function values 𝑦1, … , 𝑦𝑛. Left: A piecewise constant interpolation by com-
putingV(𝑃) and lifting eachVoronoi regionVR(𝑝𝑖) by 𝑦𝑖. Right: A piecewise linear interpolation
by computing D(𝑃) and lifting each triangle vertex 𝑝𝑖 by 𝑦𝑖.

Piecewise constant interpolation. For any 𝑝 ∈ 𝐷 we assign some function value of the set
{𝑦1, … , 𝑦𝑛}. The most natural choice is probably to find the nearest neighbor 𝑝𝑖 of 𝑝 as the best
representation among {𝑝1, … , 𝑝𝑛} and then take 𝑦𝑖 as function value of 𝑝. So what we effectively
do is that we assign the function value 𝑦𝑖 to the entire Voronoi region VR(𝑝𝑖) and so we receive
a function graph as in fig. 9.7a.

This simple scheme also works if the co-domain of 𝑓 is not ℝ, but any discrete set 𝐿, e.g., a
set of labels. We therefore want to interpolate a function 𝑓 ∶ 𝐷 → 𝐿 with a domain 𝐷 ⊆ ℝ2 and
a co-domain 𝐿. The idea of “classifying” a point 𝑝 by its nearest neighbor 𝑝𝑖 is exactly what the
k-NN (k-nearest neighbor) classification algorithm inmachine learning does for 𝑘 = 1. Actually,
there are generalizations of Voronoi diagrams to so-called higher-order Voronoi diagrams that are
in exact correspondence to the k-NN classification algorithm for 𝑘 ≥ 1.

Piecewise linear interpolation. The piecewise constant interpolation is not continuous. For
many applications, in order to compute an interpolation 𝑓 (𝑝) at a point 𝑝 we would probably
like to mix multiple function values 𝑦𝑖 depending on the distance of 𝑝 to 𝑝𝑖. So what we can do
is to computeD(𝑃) and lift each triangle vertex 𝑝𝑖 by 𝑦𝑖. This gives as a continuous, triangulated
surface as function graph, see fig. 9.7b.

Let us take any 𝑝 in the domain 𝐷. We then project 𝑝 vertically to the function graph to
determine its interpolated function value 𝑓 (𝑝). So if 𝑝 is in the Delaunay triangle (𝑝1, 𝑝2, 𝑝3) then
the function value of 𝑝 is a mix of 𝑦1, 𝑦2 and 𝑦3. More precisely, 𝑝 is then a convex combination

𝑝 = 𝜆1𝑝1 + 𝜆2𝑝2 + 𝜆3𝑝3.

The coefficients 𝜆1, 𝜆2, 𝜆3 are called the Barycentric coordinates of 𝑝 (with respect to the affine basis
𝑝1, 𝑝2, 𝑝3). The function value assigned to 𝑝 is simply

𝑓 (𝑝) = 𝜆1𝑓 (𝑝1) + 𝜆2𝑓 (𝑝2) + 𝜆3𝑓 (𝑝3) = 𝜆1𝑦1 + 𝜆2𝑦2 + 𝜆3𝑦3,

which is now a convex combination of the function values 𝑦1, 𝑦2, 𝑦3. Any triangulation would
work for this method of constructing a piecewise linear interpolation. However, as the Delaunay

94 CHAPTER 9. VORONOI DIAGRAM AND DELAUNAY TRIANGULATION

triangulation contains triangles that tend to be more equilateral, the (maximum) distance of a
point 𝑝 to its triangle vertices tend to be smaller. (The circumcenter of acute triangles is within
the triangle.) Take for instance a point in the middle but slightly above the edge 𝑠1𝑠4 in fig. 9.5b.
Then such a point is better interpolated using the Delaunay triangulation at the right.

9.3.2 Euclidean MST and TSP
We could directly compute the EMST using, say, Kruskal’s algorithm for the computation of the
MSTof arbitrary edge-weighted graphs applied to the complete Euclidean graph. Unfortunately,
we would need to consider 𝑒 = (𝑛

2) = 𝑛(𝑛−1)
2 edges between all pairs of points and Kruskal’s

algorithm has a time complexity of 𝑂(𝑒 log 𝑒).
However, we can be shown that the EMST is part of the Delaunay triangulation, see fig. 9.8.

We already know that the Delaunay triangulation has only a linear number of edges and can be
computed in 𝑂(𝑛 log𝑛) time. Hence, we can compute the EMST in 𝑂(𝑛 log𝑛) time.

The ETSP problem is NP-hard, so there are no polynomial time algorithms assuming 𝑃 ≠
𝑁𝑃. However, one can use the EMST to compute so-called constant-factor approximations that
are no worse than a factor of 𝑐 > 1 longer than the ETSP solution. Christofides’ heuristic, for
instance, computes a 1.5-approximation in 𝑂(𝑛3) time. In 2010 Aroa and Mitchell received the
Gödel Prize for their independent discovery of (families of) polynomial-time algorithms that
compute approximations for arbitrarily small 𝑐 > 1. They discovered so-called polynomial-time
approximation schemes (PTAS) for ETSP.

Figure 9.8: The Delaunay triangulation (dotted) contains the Euclideanminimum spanning tree
(solid).

Chapter10
Skeleton structures

10.1 Motivation

We denote by a polygon with holes a set 𝑃 ⊂ ℝ2 that results from a polygon after removing poly-
gons (holes) and we assume the holes do not reach the outer boundary of the original polygon.
A polygon with holes, 𝑃, could model a two-dimensional terrain of a mobile disk-shaped robot
𝑉, or 𝑃 could model a workpiece and 𝑉 is an NC tool. On such polygons with holes we will
introduce the notion of skeleton structures that will allow us to solve the following exemplary
problems:

• First, we could ask whether 𝑉 could reach a certain target position 𝑞 ∈ 𝑃 without leaving
𝑃. We interpret the boundary of 𝑃 as walls.

• The diameter of 𝑉 could be too large to pass through certain corridors of 𝑃. So a very
related task would be to identify the so-called bottlenecks of 𝑃.

• Computing pathswithin 𝑃 leads us to the desire to represent 𝑃 as a transportation network,
i.e., a graph structure consisting of nodes and edges. So another related goal is to transform
the geometric shape 𝑃 into a network structure.

• When we interpret 𝑃 also as a workpiece that should be milled out by an NC machine or a
garden that should be mowed. In either case we would like to compute a tool path for the
CNC machine or the mowing robot.

10.2 Medial axis

The medial axis M(𝑃) of a polygon with holes, 𝑃, consists of all points 𝑝 ∈ 𝑃 with the property
that the largest disk within 𝑃 and centered at 𝑝 touches the boundary of 𝑃 at two or more points.
Put in different words, M(𝑃) consists of all points 𝑝 ∈ 𝑃 that do not have a unique closest point
to the boundary of 𝑃, see fig. 10.1.

We can actually interpretM(𝑃) as a transformation that contracts the shape𝑃 to a 1-dimensional
version while still somehow capturing topological features of 𝑃. For instance, every “loop” in
𝑃 corresponds to “loop” in M(𝑃). But also if 𝑃 resembles the shape of a hand with five fingers
then M(𝑃) contains a path for each finger. This is why the medial axis – also known as medial
axis transform (MAT) – is widely known in the image processing domain for shape description,
reconstruction and comparison.

95

96 CHAPTER 10. SKELETON STRUCTURES

p1

p2

p3
r(p3)

p4

Figure 10.1: The medial axis M(𝑃) in blue of a polygon with holes 𝑃 shaded in gray. For some
points 𝑝𝑖 the disk 𝐷(𝑝𝑖, 𝑟(𝑝𝑖)) with clearance radius 𝑟(𝑝𝑖) is shown in dashed lines. The point 𝑝4
constitutes a bottleneck.

Shape reconstruction. The application for shape reconstruction stems from the following obser-
vation: Assume we do not know 𝑃, but we know M(𝑃) and for each 𝑝 ∈ M(𝑃) we know the
distance 𝑟(𝑝) to the boundary of 𝑃. In fact, we interpret 𝑟 as a function 𝑟 ∶ M(𝑃) → ℝ and call
𝑟(𝑝) the clearance radius at 𝑝, see fig. 10.1. Then we can reconstruct 𝑃 by

𝑃 = ⋃
𝑝∈M(𝑃)

𝐷(𝑝, 𝑟(𝑝)), (10.1)

where 𝐷(𝑝, 𝑟(𝑝)) denotes the disk centered at 𝑝 and with radius 𝑟(𝑝). That is, if we place at each
𝑝 ∈ M(𝑃) a disk of radius 𝑟(𝑝) and build the union of those disks then we obtain 𝑃 again. In
this sense, eq. (10.1) is the inverse transformation of the medial axis transformation. We could
exploit eq. (10.1) to modify the shape 𝑃 by modifying 𝑟(𝑝), e.g., making certain “corridors”
slimmer or wider by reducing or increasing 𝑟(𝑝) at those points 𝑝 ∈ M(𝑃). In some sense we
edit the geometry of the shape but we leave the topology as is. Of course, if we change 𝑟(𝑝) by
too much then the topology of the resulting shape changes, e.g., holes may get filled up or bays
may turn into cavities or bridges may disrupt.

Bottlenecks. Intuitively, a bottleneck is a narrow place of a corridor of 𝑃, a location where the
boundary lines of 𝑃 come close. Themedial axisM(𝑃) allows us to turn this intuitive description
into a mathematical precise definition: A point 𝑝 ∈ M(𝑃) is called a bottleneck if 𝑝 is a local
minimum of the function 𝑟 ∶ M(𝑃) → ℝ as shown in fig. 10.1.

Note that a minimum of 𝑟 is a place 𝑝 ∈ M(𝑃) with the following property: There is a small
neighborhood around 𝑝 such that for any point 𝑝′ in this neighborhood 𝑟(𝑝′) ≥ 𝑟(𝑝) holds. In
more details, there is a 𝜀 > 0 such that for any 𝑝′ ∈ M(𝑃) with 𝑑(𝑝, 𝑝′) < 𝜀 it holds that 𝑟(𝑝′) ≥
𝑟(𝑝). Here 𝑑 refers to the Euclidean distance1.

1It actually does not matter so much which distance (metric) we take but which topology the metric induces.

10.3. GENERALIZED VORONOI DIAGRAMS 97

10.3 Generalized Voronoi diagrams

10.3.1 Introduction
The medial axis is a useful tool in computational geometry, so the practical question arises how
to actually compute it. It turns out that the medial axis M(𝑃) is actually part of a more general
structure, namely the generalized Voronoi diagram V(𝑃) of a polygon with holes 𝑃.

In section 9.1.1 we introduced the Voronoi diagrams of a point set in the Euclidean plane as
a nearest-neighbor cell decomposition. We can generalize this idea from a point set to a more
general set 𝑆 of sites. The Voronoi diagramV(𝑆) of the site set 𝑆 is then called a generalized Voronoi
diagram. There are other ways to generalize the Voronoi diagram of points, e.g., by generalizing
the metric of the Euclidean plane or by considering cells defined by 𝑘 nearest neighbors instead
of one. But here we focus on generalized sites.

10.3.2 Straight-line segments and circular arcs
In industrial practice, we are particularly interested in points and straight-line segments and
circular arcs. So let us denote by 𝑆 a finite set of sites consisting of points, straight-line segments
and circular arcs. To overcome some technical complications, we assume that for each straight-
line segment or circular arc 𝑠 ∈ 𝑆 also both its endpoints are individual sites in 𝑆.

In fig. 10.2 we illustrate the Voronoi diagram as a nearest-neighbor cell decomposition of the
plane that results from a straight-line segment and its endpoint and likewise for the circular arc.
Mathematically, a point 𝑞 in the Voronoi cell in an endpoint of 𝑠 is just as close to the endpoint
as to 𝑠 itself. So in order to have a line-like Voronoi edge – with zero area – we have to perform a
little exercise by introducing the concept of cone of influence I(𝑠) of a site 𝑠. The idea is to restrict
the Voronoi region VR(𝑠) of a site 𝑠 to a certain region, its cone of influence I(𝑠). The cone of
influence is illustrated in fig. 10.2 and defined as follows:

I(𝑠) =

⎧{{
⎨{{⎩

ℝ2 if 𝑠 is a point
orthogonal strip spanned by 𝑠 if 𝑠 is a straight-line segment
cone spanned by 𝑠 if 𝑠 is a circular arc

A different way to define I(𝑠) for straight-line segments or circular arcs 𝑠 is by means of an
intersection of two half spaces: At each end point of 𝑠 we place a half space that contains 𝑠 such
that 𝑠 is locally orthogonal to the boundary of the half space.

s
p

qI(s)

(a) Straight-line segment

sp

qI(s)

(b) Circular arc

Figure 10.2: The Voronoi diagram of a straight-line segment 𝑠 and its endpoints 𝑝, 𝑞 and likewise
for the circular arc. The Voronoi region VR(𝑠) of 𝑠 is restricted to its cone of influence I(𝑠).

98 CHAPTER 10. SKELETON STRUCTURES

Figure 10.3: The generalized Voronoi diagram of points, straight-line segments and circular arcs.
A few Voronoi regions are shaded in gray.

So now we can more or less copy over the definition of Voronoi diagram of points, see sec-
tion 9.1.1, to the more general setting:

V(𝑆) = ⋃
𝑠∈𝑆

VP(𝑠) (10.2)

where VP(𝑠) is the Voronoi “polygon” and defined as the boundary 𝜕VR(𝑠) of the Voronoi re-
gion VR(𝑠), which again is defined as

VR(𝑠) = {𝑝 ∈ I(𝑠) ∶ 𝑑(𝑝, 𝑠) ≤ 𝑑(𝑝, 𝑠′) ∀𝑠′ ∈ 𝑆}. (10.3)

Figure 10.3 shows the generalized Voronoi diagram of a couple of sites. A few Voronoi regions
have been shaded in gray and form the nearest-neighbor cells of the respective sites.

A few remarks regarding the definition of the generalized Voronoi diagram are in order. By
𝑑(𝑝, 𝑠) we mean the infimum distance between 𝑝 and 𝑠, which means that

𝑑(𝑝, 𝑠) = inf
𝑞∈𝑠

𝑑(𝑝, 𝑞).

In fig. 10.4 we illustrate what this means in general: Roughly speaking, 𝑑(𝑝, 𝐴) for a point 𝑝 and
a point set 𝐴 is the smallest distance possible between 𝑝 and any point 𝑞 ∈ 𝐴. The very same
idea could be generalized to the infimum distance 𝑑(𝐴, 𝐵) between two point sets 𝐴 and 𝐵 of the
plane.

There is a technical catch in eq. (10.3) which we ignored so far: For circular arcs 𝑠 the defi-
nition in eq. (10.3) can cause irregularities in VR(𝑠) in form of line-like needles attached to the
“region body”. For instance, the point 𝑝 in fig. 10.5 would be member of both Voronoi regions
VR(𝑠) and VR(𝑠′), and so is the entire line segment to the circle center. Hence, the Voronoi poly-
gons are no longer closed curves. In order to remove these irregularities, the definition of VR(𝑠)

p
d(p, A)

A

Figure 10.4: The infimum distance 𝑑(𝑝, 𝐴) between a point 𝑝 and a point set 𝐴.

10.3. GENERALIZED VORONOI DIAGRAMS 99

is adapted to

VR(𝑠) = cl{𝑝 ∈ int I(𝑠) ∶ 𝑑(𝑝, 𝑠) ≤ 𝑑(𝑝, 𝑠′) ∀𝑠′ ∈ 𝑆}, (10.4)

which means that we first take the topological interior and then form the topological closure.2
In simple words, the boundary of I(𝑠) is first removed, which cuts off the needles, and then
the boundary of the resulting set – the intended Voronoi polygon, a closed curve – is re-added.
Details can be found in [16, 15].

p

s

s′

VR(s′)

Figure 10.5: The point 𝑝 ∈ VR(𝑠). But since 𝑑(𝑝, 𝑠) = 𝑑(𝑝, 𝑠′) the point 𝑝 would also be part of
VR(𝑠′) if we would use eq. (10.3) instead of eq. (10.4).

10.3.3 Polygon with holes

Let us consider a polygon with holes 𝑃. Its boundary consists of vertices and edges. Let us
denote by 𝑆 the set of vertices and straight-line edges of 𝑃. We then define the Voronoi diagram
V(𝑃) of 𝑃 simply as V(𝑆). Depending on the application and the context we may restrict the
Voronoi diagram to 𝑃 and ignore everything outside 𝑃.

In fig. 10.6we show theVoronoi diagramV(𝑃) of the same polygonwith holes𝑃 as in fig. 10.1.
We realize that they are essentially the same. More precisely,M(𝑃) ⊆ V(𝑃) andV(𝑃)∖M(𝑃) only
consists of the Voronoi edges incident to reflex3 vertices of 𝑃. This makes sense if we remember
that M(𝑃) consists of all points that have two nearest points on the boundary of 𝑃. These points
therefore lie on the bisector between vertices and edges of 𝑃 and no other site can be closer, so
they must also lie on Voronoi edges. Hence, one way to compute the medial axis is to compute
the Voronoi diagram and drop the Voronoi edges incident to reflex vertices.

Both, the concept of the medial axis and the concept of generalized Voronoi diagrams can be
applied to polygonswith holes, where the boundary elements are not only straight-line segments
but also circular arcs. For industrial applications, especially in the CAD/CAM domain, this is of
high relevance.4

2In topology we call 𝑂(𝑐, 𝑟) = {𝑝 ∈ ℝ2 ∶ ‖𝑝 − 𝑐‖ < 𝑟} an open disk centered at 𝑐 ∈ ℝ2 and with radius 𝑟. For a set 𝐴
we define its interior, int𝐴, as the set of points 𝑝 ∈ 𝐴 for which we can find a small enough 𝑟 > 0 such that 𝐷(𝑝, 𝑟) ⊆ 𝐴.
The closure cl𝐴 is defined by (int𝐴𝑐)𝑐, where 𝐴𝑐 = ℝ2 ∖ 𝐴 is the complement of 𝐴. The boundary of 𝜕𝐴 is defined as
cl𝐴 ∖ int𝐴.

3A reflex vertex is a non-convex vertex.
4In theory, the class of shapes 𝑃 for which M(𝑃) and V(𝑃) have meaning can be extended to a significantly more

general class.

100 CHAPTER 10. SKELETON STRUCTURES

sV R(s)

s′

VR(s’)

Figure 10.6: The Voronoi diagram V(𝑃) of a polygon with holes 𝑃 gives a nearest-neighbor cell
decomposition of 𝑃. A few cells (Voronoi regions) are shaded in gray. The Voronoi diagram
contains the medial axis M(𝑃), cf. fig. 10.1.

10.3.4 Computing generalized Voronoi diagrams
Geometry. If the site set 𝑆 consists of points only then the Voronoi polygonsVP(𝑠) form convex
polygons. In particular, the Voronoi edges are all straight-line edges and the reason for this is
that Voronoi edges are sections of the bisector between two point sites.

For the generalized Voronoi diagram we now have to also take into account the bisector be-
tween all combinations of points, straight-line segments and circular arcs. A point can be seen
as a circle with zero radius. It turns out that all bisectors are formed by conic sections.

• The bisector between a straight line and a circle is a parabola.

• The bisector between two circles is either a hyperbola or an ellipse.

• The bisector between two straight lines is a straight line line.

The Voronoi nodes are located at the intersection of these bisectors. Directly computing the
intersection of conic sections is not recommended from a numerical point of view. However,
their location can also be computed by determining the points that are equidistant to three sites.
This can actually be done by solving quadratic equations after the problem is transformed in an
adequate way, see [16] for details.

Topology. The topology-oriented randomized incremental construction algorithm for Voronoi
diagrams of points can be generalized to the generalizedVoronoi diagram of points, straight-line
segments and circular arcs. It can be proven that the expected runtime of the above algorithm
is in 𝑂(𝑛 log𝑛), see [15].

However, in order for that to work we require that when we insert a new site and therefore
remove parts of the old Voronoi diagram then we only remove a tree structure, without cycles.
This is actually not the case if we do not carefully prepare Voronoi edges: We need to split
Voronoi edges at their apex (as conic sections). This means the following: If we consider the
distance of points on the Voronoi edge to its two sites then this distance, in general, does not

10.4. THE GRASSFIRE MODEL, OFFSETTING AND TOOL PATHS 101

change monotonically when sliding along the Voronoi edge. At the point on the Voronoi edge
where this distance attains a minimum, we split the Voronoi edge and add a degree-2 Voronoi
node. A detailed discussion on this procedure can be found in [16].

10.4 The grassfire model, offsetting and tool paths
Consider a point set 𝑆 with 𝑛 points in the plane and spread a grassfire at each of them. Assume
the fire expands with equal speed in each direction, like circular waves that are emanated from
the points in 𝑆. At certain locations in the plane the “fire waves” emanated from different points
of 𝑆 meet each other and the fire stops. What we receive is the picture in fig. 10.7: The points
where the fires meet are exactly given by the Voronoi diagram V(𝑆).

Figure 10.7: Grassfire model for a point set 𝑆. It sends out unit-speed offset waves from the sites
in 𝑆 and they interfere on V(𝑆).

Hence, we could actually define V(𝑆) also as the “interference pattern” of isotropic unit-
speed waves wavefronts. We can apply the very same idea not only to point sets 𝑆. In fig. 10.8
we illustrate the grassfire wavefronts emanated by the points and straight-line segments of a
polygon with holes 𝑃. The interference patterns give as V(𝑃) again.

In CAD/CAM we call these grassfire wavefronts “offset curves” and in geographic informa-
tion systems we call this operation “buffering”. In NC-machining, wavefront curves are used
for tool radius correction and the computation of tool paths, e.g., for NCmilling machines or 3D
plotters. Once the Voronoi diagram V(𝑃) has been computed, an offset curve is computed in an
easy, fast and numerically stable way by traversing the Voronoi diagram.

10.5 Straight skeletons

We call V(𝑃) andM(𝑃) a skeleton of 𝑃 because it encodes topological features of 𝑃. In particular,
for each hole of 𝑃 we receive a cycle in the skeleton. They also encode certain geometric features,
but a different skeleton would possibly encode different geometric features.

The grassfiremodel associated to Voronoi diagrams emanates a circular wavefront from non-
convex vertices of a polygon with holes 𝑃, cf. fig. 10.8. What happens if we would emanate
mitered offset curves instead? That is, the wavefront emanated at non-convex vertices would
remain a sharp v-shape. So only the edges of 𝑃 move inwards at unit speed and in parallel. Of
course, the skeleton structure associated to this wavefront is different to V(𝑃). It is called the
straight skeleton S(𝑃). Unlike the generalized Voronoi diagram, the straight skeleton consists of
straight-line segments only, hence its name.

102 CHAPTER 10. SKELETON STRUCTURES

Figure 10.8: The offset curves given by grassfirewavefront curves. Its interference patterns create
the Voronoi diagram.

Figure 10.9: Mitered offset curves and the straight skeleton S(𝑃) of a polygon with holes 𝑃.

Part IV

Appendices

103

AppendixA
Selected details

A.1 Computing cubic splines
In order to compute a natural cubic spline we could simply solve the linear equation system
formed by the 4(𝑛 − 1) conditions in section 4.4.2.

If we take a closer look, however, we see that this system can be significantly simplified. First
of all we apply a parameter substitution that in away shift and stretch the 𝑝𝑖 such that they are
defined over [0, 1] rather than [𝑥𝑖, 𝑥𝑖+1]. More precisely, let

𝑞𝑖(𝑥) = 𝑝𝑖 (
𝑥 + 𝑥𝑖

𝑥𝑖+1 − 𝑥𝑖
)

Hence, 𝑞𝑖(0) = 𝑝𝑖(𝑥𝑖) and 𝑞𝑖(1) = 𝑝𝑖(𝑥𝑖+1). If we know the 𝑞𝑖 then we know the 𝑝𝑖, and vice versa.
The 𝑞𝑖 are again polynomials

𝑞𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑥2 + 𝑑𝑖𝑥3

Because 𝑎𝑖 = 𝑞𝑖(0) = 𝑝𝑖(𝑥𝑖) = 𝑦𝑖 we immediately know that 𝑎𝑖 = 𝑦𝑖 and therefore

𝑞𝑖(𝑥) = 𝑦𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑥2 + 𝑑𝑖𝑥3

𝑞′
𝑖(𝑥) = 𝑏𝑖 + 2𝑐𝑖𝑥 + 3𝑑𝑖𝑥2

𝑞″
𝑖 (𝑥) = 2𝑐𝑖 + 6𝑑𝑖𝑥

This leaves us with three unknowns 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 per polynomial. In the following we will use

𝑞𝑖(1) = 𝑦𝑖 + 𝑏𝑖 + 𝑐𝑖 + 𝑑𝑖
𝑞′

𝑖(1) = 𝑏𝑖 + 2𝑐𝑖 + 3𝑑𝑖
𝑞′

𝑖(0) = 𝑏𝑖

Note that 𝑞𝑖(1) = 𝑦𝑖+1 and 𝑞′
𝑖(1) = 𝑞′

𝑖+1(0), which gives us the system

𝑦𝑖 + 𝑏𝑖 + 𝑐𝑖 + 𝑑𝑖 = 𝑦𝑖+1
𝑏𝑖 + 2𝑐𝑖 + 3𝑑𝑖 = 𝑏𝑖+1

We can solve for 𝑐𝑖 and 𝑑𝑖 and receive for 1 ≤ 𝑖 ≤ 𝑛 − 2

𝑐𝑖 = 3(𝑦𝑖+1 − 𝑦𝑖) − 2𝑏𝑖 − 𝑏𝑖+1
𝑑𝑖 = 2(𝑦𝑖 − 𝑦𝑖+1) + 𝑏𝑖 + 𝑏𝑖+1

105

106 APPENDIX A. SELECTED DETAILS

If we know the 𝑏𝑖 then we can compute the 𝑐𝑖 and 𝑑𝑖 and are done. So all unknowns that
remain are 𝑏1, … , 𝑏𝑛−1. What we did not use so for is that the second derivatives have to match
too, i.e., 𝑞″

𝑖 (1) = 𝑞″
𝑖+1(0). This gives for 1 ≤ 𝑖 ≤ 𝑛 − 3

2𝑐𝑖 + 6𝑑𝑖 = 2𝑐𝑖+1
𝑐𝑖 + 3𝑑𝑖 = 𝑐𝑖+1

3(𝑦𝑖+1 − 𝑦𝑖) − 2𝑏𝑖 − 𝑏𝑖+1 + 6(𝑦𝑖 − 𝑦𝑖+1) + 3𝑏𝑖 + 3𝑏𝑖+1 = 3(𝑦𝑖+2 − 𝑦𝑖+1) − 2𝑏𝑖+1 − 𝑏𝑖+2
𝑏𝑖 + 4𝑏𝑖+1 + 𝑏𝑖+2 = 3(𝑦𝑖+2 − 𝑦𝑖)

For a natural splinewe also require 𝑞″
1(0) = 𝑞″

𝑛−1(1) = 0. This gives 𝑐1 = 0 and 2𝑐𝑛−1+6𝑑𝑖 = 0
and results after some calculations in the equations

2𝑏1 + 𝑏2 = 3(𝑦2 − 𝑦1)
𝑏𝑛−2 + 2𝑏𝑛−1 = 3(𝑦𝑛 − 𝑦𝑛−1)

Altogether we end up with 𝑛 − 1 equations for 𝑏1, … , 𝑏𝑛−1:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 1
1 4 1

1 4 1
1 4 1

⋱
1 4 1

1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⋅

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑏1
𝑏2
𝑏3
𝑏4
⋮

𝑏𝑛−2
𝑏𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3(𝑦2 − 𝑦1)
3(𝑦3 − 𝑦1)
3(𝑦4 − 𝑦2)
3(𝑦5 − 𝑦3)

⋮
3(𝑦𝑛 − 𝑦𝑛−2)
3(𝑦𝑛 − 𝑦𝑛−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The coefficient matrix is a so-called tridiagonalmatrix. Such equation systems can be actually
solved in 𝑂(𝑛) time by dedicated algorithms. See [21] for details. Solving the linear system gives
us the 𝑏𝑖, which then yield 𝑐𝑖 and 𝑑𝑖, after which we know the polynomials 𝑞𝑖. These can then be
transformed back to the 𝑝𝑖 if desired.

A.2 Proof sketch for in-circle point location

In section 5.2.5 we learned about a determinate in eq. (5.5) that allows for location tests of points
𝑝 for circles given by three points 𝑎, 𝑏, 𝑐. What follows is a proof sketch.

Let us the consider the case where ○(𝑎, 𝑏, 𝑐, 𝑝) = 0. The determinant is zero when the fourth
row of the determinant is a linear combination of the other three rows, i.e.,

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑝𝑥
𝑝𝑦

𝑝2
𝑥 + 𝑝2

𝑦
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 𝛼
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎𝑥
𝑎𝑦

𝑎2
𝑥 + 𝑎2

𝑦
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+ 𝛽
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑏𝑥
𝑏𝑦

𝑏2
𝑥 + 𝑏2

𝑦
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+ 𝛾
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑐𝑥
𝑐𝑦

𝑐2
𝑥 + 𝑐2

𝑦
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

for some coefficients 𝛼, 𝛽, 𝛾. We can reinterpret this equation as three equations

1 = 𝛼 + 𝛽 + 𝛾
𝑝 = 𝛼𝑎 + 𝛽𝑏 + 𝛾𝑐

‖𝑝‖2 = 𝛼‖𝑎‖2 + 𝛽‖𝑏‖2 + 𝛾‖𝑐‖2

A.2. PROOF SKETCH FOR IN-CIRCLE POINT LOCATION 107

The first two lines say that 𝛼, 𝛽, 𝛾 are coefficients of an affine combination, namely 𝑝 is an
affine combination of the three points 𝑎, 𝑏, 𝑐. Let us denote by 𝑚 ∈ ℝ2 the center and by 𝑟 the
radius of the circumcircle of 𝑎, 𝑏, 𝑐. Then we can rephrase the third equation as follows

‖𝑝‖2 = 𝛼‖𝑎‖2 + 𝛽‖𝑏‖2 + 𝛾‖𝑐‖2

‖𝑝‖2 + ‖𝑚‖2 = 𝛼(‖𝑎‖2 + ‖𝑚‖2) + 𝛽(‖𝑏‖2 + ‖𝑚‖2) + 𝛾(‖𝑐‖2 + ‖𝑚‖2)
‖𝑝‖2 + ‖𝑚‖2 − 2𝑝 ⋅ 𝑚 = 𝛼(‖𝑎‖2 + ‖𝑚‖2 − 2𝑎 ⋅ 𝑚) + 𝛽(‖𝑏‖2 + ‖𝑚‖2 − 2𝑏 ⋅ 𝑚) + 𝛾(‖𝑐‖2 + ‖𝑚‖2 − 2𝑐 ⋅ 𝑚)

(‖𝑝 − 𝑚‖)2 = 𝛼(‖𝑎 − 𝑚‖)2 + 𝛽(‖𝑏 − 𝑚‖)2 + 𝛾(‖𝑐 − 𝑚‖)2

(‖𝑝 − 𝑚‖)2 = 𝑟2.

Note thatwe used 𝑟 = ‖𝑎−𝑚‖ = ‖𝑏−𝑚‖ = ‖𝑐−𝑚‖ and 𝑝⋅𝑚 = (𝛼𝑎+𝛽𝑏+𝛾𝑐)⋅𝑚. This fourth equation
is therefore equivalent to saying 𝑝 is on the circle and ○(𝑎, 𝑏, 𝑐, 𝑝) is zero on the circumcircle of
𝑎, 𝑏, 𝑐. Within the circle and outside the circle it is either entirely positive or entirely negative as
○(𝑎, 𝑏, 𝑐, 𝑝) is continuous in 𝑝. However, note that ○(𝑎, 𝑏, 𝑐, 𝑝) tends towards ∞ when 𝑝 goes to
infinity because the co-factor

∣
∣
∣
∣
∣

𝑎𝑥 𝑎𝑦 1
𝑏𝑥 𝑏𝑦 1
𝑐𝑥 𝑐𝑦 1

∣
∣
∣
∣
∣

of ○(𝑎, 𝑏, 𝑐, 𝑝) is positive for counterclockwise 𝑎, 𝑏, 𝑐. Hence, ○(𝑎, 𝑏, 𝑐, 𝑝) is positive everywhere
outside the circle (and negative inside).

108 APPENDIX A. SELECTED DETAILS

Bibliography
[1] 754-1985 – IEEE Standard for Binary Floating-Point Arithmetic. Note: Standard 754–1985.

NewYork: Institute of Electrical andElectronics Engineers, 1985. url: https://ieeexplore.
ieee.org/document/30711.

[2] C. Bradford Barber and Hannu Huhdanpaa. Qhull. url: http://www.qhull.org/.
[3] C. Bradford Barber et al. “The Quickhull Algorithm for Convex Hulls.” In: ACM Transac-

tions of Mathematical Software 22.4 (1996-12), pp. 469–483. doi: 10.1145/235815.235821.
[4] Mark de Berg et al. Computational Geometry: Algorithms and Applications. 3rd ed. Santa

Clara, CA, USA: Springer-Verlag TELOS, 2008. isbn: 3540779736, 9783540779735.
[5] Clang Developers: Fixed Point Arithmetic Proposal. 2018. url: http://clang-developers.

42468.n3.nabble.com/Fixed-Point-Arithmetic-Proposal-td4060468.html (visited
on 04/25/2020).

[6] Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. 2007.

[7] Satyan L. Devadoss and Joseph O’Rourke. Discrete and Computational Geometry. Princeton
University Press, 2011. isbn: 9781400838981.

[8] DSP-C – An extension to ISO/IEC IS 9899:1990. Standard. ACE Associated Compiler Ex-
perts bv, 2008-02. url: http://www.ace.nl/sites/default/files/paper-dsp-c.pdf
(visited on 04/25/2020).

[9] Herbert Edelsbrunner and John Harer. Computational Topology - an Introduction. American
Mathematical Society, 2010. isbn: 978-0-8218-4925-5.

[10] GCC Wiki: Fixed-Point Arithmetic Support. 2007. url: https : / / gcc . gnu . org / wiki /
FixedPointArithmetic (visited on 04/25/2020).

[11] David Goldberg. “What Every Computer Scientist Should Know About Floating-point
Arithmetic.” In: ACM Comput. Surv. 23.1 (1991-03), pp. 5–48. issn: 0360-0300. doi: 10 .
1145/103162.103163.

[12] Peter M. Gruber. Convex and Discrete Geometry. Springer-Verlag Berlin Heidelberg, 2007.
isbn: 978-3-540-71132-2.

[13] Martin Held. Computational Geometry. 2018-09. url: https://www.cosy.sbg.ac.at/
~held/teaching/compgeo/cg_study.pdf.

[14] Martin Held. Computational Geometry. lecture notes. SS 2018. url: https://www.cosy.
sbg.ac.at/~held/teaching/compgeo/comp_geo.html.

[15] MartinHeld and StefanHuber. “Topology-Oriented Incremental Computation of Voronoi
Diagrams of Circular Arcs and Straight-Line Segments.” In: Computer Aided Design 41.5
(2009-05), pp. 327–338. doi: 10.1016/j.cad.2008.08.004.

[16] Stefan Huber. “Computation of Voronoi Diagrams of Circular Arcs and Straight Lines.”
MA thesis. Universität Salzburg, Austria, 2008-02.

109

https://ieeexplore.ieee.org/document/30711
https://ieeexplore.ieee.org/document/30711
http://www.qhull.org/
https://doi.org/10.1145/235815.235821
http://clang-developers.42468.n3.nabble.com/Fixed-Point-Arithmetic-Proposal-td4060468.html
http://clang-developers.42468.n3.nabble.com/Fixed-Point-Arithmetic-Proposal-td4060468.html
http://www.ace.nl/sites/default/files/paper-dsp-c.pdf
https://gcc.gnu.org/wiki/FixedPointArithmetic
https://gcc.gnu.org/wiki/FixedPointArithmetic
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://www.cosy.sbg.ac.at/~held/teaching/compgeo/cg_study.pdf
https://www.cosy.sbg.ac.at/~held/teaching/compgeo/cg_study.pdf
https://www.cosy.sbg.ac.at/~held/teaching/compgeo/comp_geo.html
https://www.cosy.sbg.ac.at/~held/teaching/compgeo/comp_geo.html
https://doi.org/10.1016/j.cad.2008.08.004

110 BIBLIOGRAPHY

[17] Programming languages – C – extensions to support embedded processors. Standard ISO/IEC
TR 18037:2008. International Organization for Standardization, 2008-06. url: https://
www.iso.org/standard/51126.html.

[18] Johann Linhart. Numerische Mathematik. WS 2004/05. url: https://www.uni-salzburg.
at/fileadmin/multimedia/Mathematik/documents/Num.Mathematik_WS2004.pdf.

[19] Cleve B. Moler. “A Tale of Two Numbers.” In: SIAM News 28 (1995-01). Also in MATLAB
News and Notes, Winter 1995, 10–12, pp. 1, 16. issn: 0036-1437.

[20] Frederick P. Brooks.TheMythicalMan-Month: Essays on Software Engineering. 1st ed.Addison-
Wesley, 1975. isbn: 978-0-201-00650-6.

[21] WilliamH. Press et al.Numerical Recipes 3rd Edition: The Art of Scientific Computing. 3rd ed.
New York, NY, USA: Cambridge University Press, 2007. isbn: 0521880688, 9780521880688.

[22] Sun One Studio. Numerical Computation Guide. 2003.
[23] Kokichi Sugihara and Masao Iri. “Construction of the Voronoi Diagram for ‘One Mil-

lion’ Generators in Single-Precision Arithmetic.” In: Proceedings of the IEEE 80.9 (1992-09),
pp. 1471–1484. doi: 10.1109/5.163412.

[24] Alfred North Whitehead. An Introduction to Mathematics. Oxford University Press, 1958.
isbn: 9780195002119.

https://www.iso.org/standard/51126.html
https://www.iso.org/standard/51126.html
https://www.uni-salzburg.at/fileadmin/multimedia/Mathematik/documents/Num.Mathematik_WS2004.pdf
https://www.uni-salzburg.at/fileadmin/multimedia/Mathematik/documents/Num.Mathematik_WS2004.pdf
https://doi.org/10.1109/5.163412

Index
𝛿𝑖𝑗, see Kronecker delta
_Accum, 15
_Fract, 15
_Sat, 15
3D plotting, 101

absolute condition, 22
absolute error, 18
absolute rounding error, 18
accum, 15
acyclic, 78
adjacent, 76
affine combination, 107
alpha shape, 61
analytic, 39
antisymmetry, 19
associative law, 18
asymptotically equivalent, 29

b-adic number expansion, 8
back-substitute, 28
Barycentric coordinates, 93
basis, 8
Bayesian network, 80
BCD, see binary coded decimal
bias, 13
binary coded decimal, 11
bit, 11
bottleneck, 96
buffering (GIS), 101

cam profile, 44
splines, 45

cancellation, 23
carry-over, 17
ccw

see counterclockwise, 57
center of gravity, 61
central three-point formula, 47
Chebyschev polynomial, 41
Chebyshev nodes, 41

chopping, 9
circular scan, 91
clearance radius, 96
clockwise, 57
closed

path, 77
tour, 77
walk, 77

collinear, 57
combinatorial geometry, 55
complete Euclidean graph, 84
complete graph, 75
composite rules, 50
computational geometry, 55
condition, 20
condition of an algorithm., 23
cone of influence, 97
connected, 77
consistency, 20
convex, 61

combination, 61
hull, 62
set, 61

convex combination, 61
convex hull, 61
convex polyhedron, 82
counterclockwise, 57
cw

see clockwise, 57
cycle, 77

data fitting, 31
decimal system, 7
degree formula, 76
degree of a vertex, 76
Delaunay triangulation, 89
denormalized, 10, 13
diameter

of a graph, 81
digit, 8

significance, 10

111

112 INDEX

digital signal processor, 14
digraph, 75
Dijkstra algorithm, 81
divide and conquer, 43
double precision floating-point, 12
drawing, 75

of a graph, 82
dual graph, 83
dynamic programming, 43

edge flip, 89
edge graph, 82
edge-weighted graph, 80
Embedded C, 14
EMST, see Euclidean minimum spanning tree
epsilon-based comparison, 19
equilibration, 36
ETSP, see Euclidean traveling salesperson prob-

lem
Euclidean graph, 84
Euclidean minimum spanning tree, 84, 94
Euclidean traveling salespersonproblem, 84, 94
Euler’s formula, 82
Eulerian path, see Eulerian tour
Eulerian tour, 79
exponent, 9
extended double-precision, 19
extended Newton-Cotes formulas, 50
extended Simpson’s rule, 50
extended trapezoidal rule, 50
extrapolation, 39

face, 82
fixed-point number, 8, 13
floating-point arithmetic, 17
floating-point number, 9, 12
fract, 15
fractional digits, 8
function approximation, 39

generalized Voronoi diagram, 97
geometric

construction, 55
predicate, 55

geometric graphs, 84
Givens rotation, 35
Graham scan, 63
graph, 75

directed, 75
simple, 76

underlying, 76
undirected, 75

graph edge, 75
graph vertex, 75

indegree, 76
outdegree, 76

Hamiltonian cycle, 78
handshaking lemma, 76
hardware number format, 11
higher-order Voronoi diagrams, 93
homogeneous coordinates, 57
Housholder reflection, 35

ill-conditioned, 22
incident, 76
infimum distance, 98
instable, 23
integer, 11
integral digit, 8
interpolation error, 41
interpolation node, 39
interpolation polynomial, 40
inverse

matrix, 30
ISO/IEC TR 18037, 14
isolated vertex, 76

k-nearest neighbor classification, 93
k-NN, 93
kd tree, 72
Kepler’s barrel rule, 49
Kronecker delta, 27
Kruskal’s algorithm, 82

Lagrange polynomials, 43
Lagrange’s formula, 43
leafs, 78
length

of a walk, 80
path, 77
tour, 77
walk, 77

loop, 76
loss, 34
LU decomposition, 36

machine accuracy, 18
machine epsilon, 18
machine number, 17

INDEX 113

machine operation, 18
mantissa, 9
mantissa length, 9
maximum norm

of a function, 41
medial axis, 95
medial axis transform, 95
memoization, 44
minimum spanning tree, 81
Moore-Penrose inverse, 32
most-significant digit, 10
MST, see minimum spanning tree

NaN, 13
natural spline, 45
nearest neighbor search, 69
network, 80
neural net

overfitting, 38
regularization, 38
training, 34

Neville algorithm, 43
Neville tableau, 43
Newton-Cotes formula, 49
node

see interpolation node 39
node polynomial, 41
normalized floating-point, 9
not a number, 13

octree, 72
one’s complement, 11
orthogonal range searching, 69
outer face, 82
overdetermined, 30
overfitting neural net, 38

path, 77
Piecewise constant interpolation, 93
Piecewise linear interpolation, 93
pivoting, 29
planar embedding, 82
planar graph, 82
planar straight-line graph, 84
polynomial regression, 33
polynomial-time approximation schemes, 94
positional number system, 7
post office problem, 87
power series, 40
Prim’s algorithm, 82

pseudoinverse, 32
PSLG

seeplanar straight-line graph, 84
PTAS, see polynomial-time approx. scheme

Q format, 14
qhull, 62
QR decomposition, 35
quadtree, 71
quickhull, 62

radius correction
see tool radius correction, 101

range searching, 69
orthogonal, 69

recreational mathematics, 80
reduction, 65
regression

linear, 31
regular graph, 76
regular matrix, 27
regularization, 37
relative condition, 22
relative error, 18
relative machine accuracy, 18
relative rounding error, 18
Richardson extrapolation, 50
right triangular matrix, 28
Romberg integration, 50
rooted trees, 78
round to nearest, 17
rounding, 17
row reduction, 27
Runge’s phenomenon, 41

sat, 15
saturating, 15
shape reconstruction, 96
shortest path, 81
shortest walk, see shortest path
signed integer, 11
Simpson’s rule, 49

extended, 50
single precision floating-point, 12
singular value decomposition, 32
sites, 97
skeleton, 101
space complexity, 19
spanning subgraph, 78
spanning tree, 78

114 INDEX

spline
for cam profile, 45
natural, 45

splines, 44
stability, 20
stochastic gradient descent, 34
Stone-Weierstrass approximation theorem, 39
straight skeleton, 101
subgraph, 77
supervised machine learning, 34
symmetry, 19
system of linear equations, 27

Taylor series, 40
three-point formula, 47
threshold-based comparison, 19
time complexity, 19
tool paths, 101
tool radius correction, 101
topology-oriented computation, 91
tour, 77
transitive law, 19
trapezoidal rule, 49

extended, 50
traveling salesperson problem, 82
tree, 78
triangulation, 84
TSP, see traveling salesperson problem
two’s complement, 11
two-point formula, 46

unsigned integer, 11
upper triangularmatrix, see right triangularma-

trix

Vandermonde determinant, 40
Voronoi diagram, 88
Voronoi edges, 88
Voronoi nodes, 88
Voronoi polygon, 88
Voronoi region, 88

walk, 77
weight, 81

of a subgraph, 81
of an edge, 80

weighted digraph, 80
weighted graph, 80
well-conditioned, 22

x87, 19

	Contents
	Introduction
	I Numerical programming
	Representation of numbers
	The b-adic expansion
	Mathematical basics
	Finite representations

	Hardware number formats
	Integers
	IEEE754 floating-point numbers
	Fixed-point formats

	Computing with numbers
	Floating-point arithmetic
	Rounding
	Error and accuracy
	Machine operations

	Numerical analysis
	Numerical algorithms
	Condition of a problem
	Stability of an algorithm

	II Numerical mathematics
	Systems of linear equations
	Introduction
	Gaussian elimination
	Right triangular matrix and back substitution
	Pivoting
	Time complexity
	Multiple right-hand sides

	Linear regression
	Overdetermined system of equations
	Normal equations
	Fitting functions
	QR decomposition
	Equilibration and regularization

	Polynomial interpolation
	Motivation
	Power series
	Single interpolation polynomials
	Existence
	Interpolation error
	Computing interpolation polynomials

	Splines
	Motivation
	Cubic splines

	Numerical derivatives
	Numerical integration
	Basic integration formulas
	Extended formulas

	Richardson extrapolation
	Limit of a sequence
	Romberg integration

	III Computational Geometry
	Geometric computations
	Introduction
	Geometric constructions and predicates
	Construction of orthogonal vectors
	Orientation of three points
	Point location in triangles and convex polygons
	Intersection of two line segments
	Point location in circle

	Convex hull
	Convexity
	Quickhull
	Graham scan
	Lower bound on the time complexity
	Applications

	Range searching
	Introduction
	Geometric hashing
	Hierarchical data structures
	Quadtrees
	k-d trees

	Graphs
	Basic notions
	Paths, cycles and trees
	Weighted graphs
	Planar graphs and geometric graphs
	Planar graphs
	Geometric graphs

	Voronoi diagram and Delaunay triangulation
	Definition and properties
	Voronoi diagram of points
	Delaunay triangulation

	Computation
	Incremental construction of Voronoi diagrams
	Complexity and implementations

	Applications
	Terrain interpolation
	Euclidean MST and TSP

	Skeleton structures
	Motivation
	Medial axis
	Generalized Voronoi diagrams
	Introduction
	Straight-line segments and circular arcs
	Polygon with holes
	Computing generalized Voronoi diagrams

	The grassfire model, offsetting and tool paths
	Straight skeletons

	IV Appendices
	Selected details
	Computing cubic splines
	Proof sketch for in-circle point location

	Bibliography
	Index

